跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡易成
研究生(外文):TSAI,YI-CHENG
論文名稱:使用均勻阻抗負載樁共振器設計多頻寬止帶帶通濾波器與雙工器
論文名稱(外文):Multiband Bandpass Filters with Wide Stopband and a Duplexer Using Uniform-Impedance Stub-Loaded Resonators
指導教授:劉世崑劉世崑引用關係
指導教授(外文):LIU,SHIH-KUN
口試委員:翁敏航王鴻猷劉志益劉世崑
口試委員(外文):WENG,MIN-HANGWANG,HUNG-YULIU,CHIH-YILIU,SHIH-KUN
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:103
中文關鍵詞:負載樁共振器雙頻三頻帶通濾波器雙工器
外文關鍵詞:uniform-impedance stub-loaded resonatorsdual bandtri-bandbandpass filterduplexer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
現今許多文獻在濾波器電路設計上越來越複雜,因使用了多種不同種類之共振器,使得分析難度大大提升。也因無法單獨調控通帶之中心頻率,造成多頻電路設計上之困難。為此,本研究希望達到電路結構簡化及通帶之獨立調控,並使電路具寬止帶之特性。本研究共計完成四種不同種類之濾波器:緊湊型寬止帶帶通濾波器、窄通帶間距雙頻寬止帶帶通濾波器、三頻雙工器及三頻寬止帶帶通濾波器。
在緊湊型雙頻寬止帶帶通濾波器中,使用一對負載樁共振器加上一對均勻阻抗共振器所設計而成。饋入線採包覆式饋入,可使得電路產生多重耦合路徑,提升混附波之抑制效果,濾波器之止帶寬度可達5.3 f0。另外,兩通帶之共振點不同,可獨立操控兩通帶之中心頻率。本濾波器之中心頻率為1.85/3.69 GHz,符合LTE與WiMAX應用頻段。
在窄通帶間距雙頻寬止帶帶通濾波器中,沿用上述緊湊型雙頻寬止帶帶通濾波器之主體架構。利用兩通帶能夠獨立操控之特性,將兩通帶的中心頻率做在2.28/2.8 GHz,其兩通帶間距只有0.52 GHz。另外,結合多重耦合路徑與負載樁共振器結構,使通帶之間產生零點,以提高隔離度。本電路之止帶寬度為4.38 f0。
在三頻雙工器中,採用之前緊湊型雙頻寬止帶通濾波器作為主體,在饋入線上電流密度較高的部分,擺放一對均勻阻抗共振器產生第三個通帶,並利用共振器貼齊饋入線之方式增加耦合量並減少面積。本三工器之中心頻率為1.78/2.71/3.37 GHz。
在三頻寬止帶帶通濾波器中,採用一對均勻阻抗共振器加上兩對負載樁共振器組合而成,在共振器外圍採用了包覆式饋入線,以提升混附波之抑制效果,使止帶寬度達到10.9 f0。另外,通帶之間具有傳輸零點,以提高隔離度。由於濾波器之三通帶共振點均不相同,可以獨立操控,本濾波器之中心頻率為1.83/2.62/3.69 GHz,符合LTE與WiMAX之所屬應用頻段。

Recently, circuit design of electrical filters in many literatures becomes complicated. It is difficult to analyze those filters because several types of resonators are used in their design. For multiband application, it is desirable to have a structure such that the center frequency for each passband can be adjusted independently. In addition, a wide stop band is also attractive in bandpass filter design. In this study, four circuits are proposed. There are a compact dual-band bandpass filter with wide stopband, a wide-stopband dual-band bandpass filter with close center frequencies of the passbands, a tri-band diplexer, and a tri-band bandpass filter with wide stopband.
The compact dual-band bandpass filter with wide stopband is composed of a pair of the uniform impedance resonators and a pair of the stub-loaded resonators. A multiple-coupling feeding scheme is used to enhance the coupling efficiency and suppress the noise. The center frequencies of the passbands can be independently adjusted by controlling the lengths of the uniform impedance resonators. As a result, the center frequencies are located at 1.85/3.69 GHz, suitable for LTE and WiMAX applications. The proposed filter has a wide stopband of about 5.3 f0.
The wide-stopband dual-band bandpass filter with close center frequencies of the passbands is composed of a pair of the uniform impedance resonators and a pair of the stub-loaded resonators. By controlling the lengths of the uniform impedance resonators and stub-loaded resonators independently, the small spectral difference between the center frequencies of the passbands can be made. Transmission zeros generated near the skirts of the passbands greatly improve selectivity and isolation of the filter. As a result, the center frequencies are located at 2.28/2.80 GHz, and the spectral between of the two passbands are only 0.52 GHz. The proposed filter has a wide stopband of about 4.38 f0.
The tri-band diplexer is composed of two pairs the uniform impedance resonators and a pair of the stub-loaded resonators. We put one pair of the uniform impedance resonators near the coupling line where current density is high to form the third passband. By tapping the resonator near the feeding line, one can increase the coupling efficiency and reduce the circuit size. As a result, the center frequencies are located at 1.78/2.71/3.37 GHz.
The tri-band bandpass filter with wide stopband is composed of a pair of uniform impedance resonators and two pairs of the stub-loaded resonators. The resonant frequency of each passband can be independently adjusted by controlling the lengths of the uniform impedance resonators and the stub-loaded resonators. As a result, the center frequencies are located at 1.83/2.62/3.69 GHz, suitable for LTE and WiMAX applications. Transmission zeros generated near the skirts of the passbands greatly improve selectivity and isolation of the filter. The proposed filter has a wide stopband of about 10.9 f0.

摘要I
Abstract II
致謝IV
目錄V
圖目錄VII
表目錄X
第1章 序論1
1.1 無線通訊系統2
1.2 射頻濾波器7
1.2.1 濾波器與傳輸線種類7
1.2.2 平面式微帶線濾波器9
1.3 實驗室相關研究11
1.4 研究動機17
1.5 論文架構19
第2章 研究方法20
2.1 設計流程20
2.2 負載樁共振器22
2.3 共振器耦合24
2.3.1 電耦合24
2.3.2 磁耦合26
2.3.3 混合式耦合28
2.4 耦合係數30
2.5 外部品質因子31
2.6 傳輸零點34
2.6.1 開路負載樁34
2.6.2 多重傳輸路徑35
第3章 雙頻寬止帶帶通濾波器36
3.1 相關文獻回顧36
3.2 緊湊型雙頻寬止帶帶通濾波器43
3.2.1 特性分析45
3.2.2 實驗結果50
3.3 窄通帶間距雙頻寬止帶帶通濾波器52
3.3.1 最佳化方式53
3.3.2 實驗結果56
3.4 結果與討論58
第4章 三頻雙工器60
4.1 相關文獻回顧60
4.2 帶通濾波器設計65
4.3 三頻雙工器設計67
4.4 最佳化分析68
4.5 結果與討論72
第5章 三頻寬止帶帶通濾波器76
5.1 相關文獻回顧76
5.2 三頻寬止帶帶通濾波器85
5.3 特性分析86
5.3.1 負載樁之差異86
5.3.2 獨立操控通帶88
5.3.3 零點與止帶操控91
5.4 結果與討論93
第6章 結論96
參考文獻98
個人簡歷表102


[1]D. K. Cheng, Field and Wave Electromagnetics, Addison Wesley, 1989.
[2]解析通訊元件:由基頻、中頻、射頻零組件讓你一次看懂手機晶片,網址:https://www.moneydj.com/KMDJ/News/NewsViewer.aspx?a=c5265d2c-eaab-4b3c-a58d-7a8630a46d24,查詢日期2017年5月15日,。
[3]S. Churchill, Wireless Recon Airplanes, http://www.dailywireless.org/2005/01/06/wireless-recon-airplanes/. Searching Date:May 3, 2017.
[4]F. Y. Lin, Design of Planar Triplexer for Communication System Using Uniform Impedance Resonators, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2015.
[5]翁敏航,射頻被動元件設計,東華書局股份有限公司,2007年3月。
[6]M. Jiang, M. H. Wu, and J. T. Kuo, “Parallel-coupled microstrip filters with over-coupled stages for multispurious suppression,” IEEE MTT-S International. Microwave Symposium Digest. pp. 687-690, Jun. 2005.
[7]C. R. Chen, Wide Stopband Single-Band and Multi-Band Bandpass Filters Using Uniform Impedance Resonators, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2015.
[8]M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Microwave Theory and Techniques, vol. 45, no. 7, pp. 1078-1085, Jul. 1997.
[9]X. Y. Zhang, J. X. Chen, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, pp. 583-585, Aug. 2007.
[10]D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, “A design of the low-pass filter using the novel microstrip defected ground structure,” IEEE Microwave Theory and Techniques, vol. 49, no. 1, pp. 86-93, Jan. 2001.
[11]S. D. Ewing and J. A. Weiss, “Ring circulator theory, design, and performance,” IEEE Microwave Theory and Techniques, vol. 15, no. 11, pp. 623-628, Nov. 1967.
[12]C. S. Ye, Y. K. Su, M. H. Weng, H. Kuan, and J. J. Syu, “Design of a compact CPW bandpass filter used for UWB application,” Microwave and Optical Technology Letters, vol. 51, no. 2, pp. 298-300, Feb. 2009.
[13]Y. T. Liu, Study of Ultra-Wideband Ring Bandpass Filters and Diplexer, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2008.
[14]C. H. Hung, Study of Bandpass Filters with Multiband, Multispurious Suppression and Ultra-Wideband, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2010.
[15]F. Z. Zheng, Multi-Band and Ultra-Wideband Bandpass Filters by Using Stepped Impedance Stub-Loaded Resonators, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2012.
[16]P. E. Chung, Multi-Band Bandpass Filters by Using Asymmetric Uniform Stub Loaded Resonators, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2013.
[17]C. H. Liu, Wide Stopband Bandpass Filters Used on Bluetooth and Wimax Applications, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2015.
[18]F. Y. Lin, Design of Planar Triplexer for Communication System Using Uniform Impedance Resonators, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2015.
[19]T. Y. Yang, Design of Ultra-Wideband Band and Mutiband Bandpass Filters Using Uniform Impedance Resonators, Master Thesis, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2016.
[20]P. A. Rizzi, Microwave Engineering Passive Circuits, Prentice-Hall Inc., 1988.
[21]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York, Wiley, 2001.
[22]X. B. Wei, G. T. Yue, J. X. Liao, P. Wang, Z. Q. Xu, and Y. Shi, “Compact dual-band bandpass filter with ultra-wide upper-stopband,” Electronics Letters, vol. 49, no. 11, pp.708-709, May 2013.
[23]C. W. Tang, H. X. Lu, and C. T. Tseng, “Design of a dual-band bandpass filter with a wide stopband,” Electronics Letters, vol. 49, no. 10, pp. 661-662, May 2013.
[24]D. Chen, L. Zhu, and C. Cheng, “A novel dual-band bandpass filter with closely spaced passbands,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 1, pp. 38-40, Jan. 2014.
[25]L. Lin, S. J. Sun, B. Wu, and C. H. Liang, “Dual-band bandpass filter with wide upper stopband using quad-mode stepped impedance stub-loaded resonator,” Electronics Letters, vol. 50, no. 16, pp. 1145–1146, Jul. 2014.
[26]F. Wei, Y. J. Guo, P. Y. Qin, and X. W. Shi, “Compact balanced dual- and tri-band bandpass filters based on stub loaded resonators,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 2, pp. 76-78, Feb. 2015.
[27]S. Liu, J. Xu, and Z. T. Xu, “Compact dual-band bandpass filters using complementary split-ring resonators with closely spaced passbands,” Electronics Letters, vol. 52, no. 15, pp. 1312–1314, Jul. 2016.
[28]W. Feng, X. Gao, and W. Che, “Microstrip diplexer for GSM and WLAN bands using common shorted stubs,” Electronics Letters, vol. 50, no. 20, pp. 1486–1488, Sep. 2014.
[29]D. Chen, L. Zhu, H. Bu, and C. Cheng, “A novel planar diplexer using slotline-loaded microstrip ring resonator,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 11, pp. 706–708, Nov. 2015.
[30]J. K. Xiao, M. Zhu, Y. Li, L. Tian, and J. G. Ma, “High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 12, pp. 781–783, Dec. 2015.
[31]J. M. Yan, H. Y. Zhou, and L. Zu. Cao, “Compact diplexer using microstrip half- and quarter-wavelength resonators,” Electronics Letters, vol. 52, no. 19, pp. 1613–1615, Sep. 2016.
[32]J. Xu, W. Wu, and C. Miao, “Compact microstrip dual-/tri-/quad-band bandpass filter using open stubs loaded shorted stepped-impedance resonator,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3187-3199, Sep. 2013.
[33]N. Kumar and Y. K. Singh, “Compact tri-band bandpass filter using three stub-loaded open-loop resonator with wide stopband and improved bandwidth response,” Electronics Letters, vol. 50, no. 25, pp. 1950–1952, Dec. 2014.
[34]C. Zhu, J. Xu, W. Kang, and W. Wu, “High-selectivity tri-band bandpass filter with ultra-wide stopband,” Electronics Letters, vol. 51, no. 20, pp. 1585–1587, Oct. 2015.
[35]S. W. Lan, M. H. Weng, S. J. Chang, C. Y. Hung, and S. K. Liu, “A tri-band bandpass filter with wide stopband using asymmetric stub-loaded resonators,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 19-21, Jan. 2015.
[36]F. Wei, P. Y. Qin, Y. J. Guo, and X. W. Shi, “Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure,” IET Microwaves, Antennas & Propagation, vol. 10, no. 2, pp. 230-236, Jan. 2016.
[37]H. W. Wu, L. Y. Jian, Y. W. Chen, and Y. K. Su, “New triple-passband bandpass filter using multipath stub loaded resonators,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 3, pp. 186-188, Mar. 2016.
[38]S. K. Liu and F. Z. Zheng, “A new compact tri-band bandpass filter using step impedance resonators with open stubs,” Journal of Electromagnetic Waves and Applications, vol. 26, no. 1, pp. 130–139, Apr. 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊