跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬亞聖
研究生(外文):Ya-Sheng Ma
論文名稱:以反應曲面法探討柑橘類果渣纖維擠壓處理之理化特性及其應用
論文名稱(外文):Study on Optimization of Extrusion Process for Physicochemical Properties and Applications of Citrus Pomace Fibers Using Response Surface Methodology
指導教授:黃雅玲黃雅玲引用關係
指導教授(外文):Ya-Ling Huang
口試委員:蔡永祥林國民
口試委員(外文):Yung-Hsiang TsaiKuo-Min LIN
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:127
中文關鍵詞:擠壓反應曲面法果渣膳食纖維理化性質體外試驗
外文關鍵詞:extrusionresponse surface methodologypomacedietary fiberphysicochemical propertyin vitro
相關次數:
  • 被引用被引用:4
  • 點閱點閱:825
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:1
柳橙與金桔是台灣重要的農業經濟作物,在加工過程中會產生大量的果渣廢棄物,果渣中含有豐富的膳食纖維,值得深入以不同加工方式開發利用。本研究利用反應曲面法探討柳橙果渣與金桔果渣擠壓加工條件之最適化,擠壓參數包括套筒溫度115C、125C、135C,原料混合後含水率10、14、18 g/100 g及螺軸轉速230、290、350 rpm,利用各項處理組之水溶性膳食纖維含量求得最佳化條件,並探討擠壓加工對擠出物理化性質之影響。繼而以體外(in vitro)實驗評估果渣擠出物對於對葡萄糖吸附、膽固醇微膠粒瓦解能力、膽酸結合能力的影響。最後以最適條件擠壓果渣,進一步將高纖擠壓物開發具有營養功能性烘焙產品,並探討果渣擠出物對吐司品質的影響。實驗結果顯示柳橙及金桔果渣中水溶性膳食纖維顯著受到三個擠壓因子的影響,由回歸方程式得知柳橙果渣之最適擠壓條件為套筒溫度131.6C、原料含水率16 %、螺軸轉速304.8 rpm,而金桔果渣之最適擠壓條件為套筒溫度128.5C、原料含水率15.6%、螺軸轉速298.1 rpm。柳橙及金桔果渣擠壓處理前的水溶性膳食纖維含量分別為17.3%及24.6%,在最適擠壓條件下,果渣經擠壓處理後其水溶性膳食纖維分別提高至29.8%及40.0%。柳橙及金桔果渣經單軸擠壓機處理後會改變其理化性質,相較於擠壓前顯著(P < 0.05)提高果渣之總體密度、水滯留能力、膨脹性、離子交換能力、水溶性指標、復水分散度、凝膠化及乳化能力。在體外實驗方面,柳橙與金桔擠壓物對葡萄糖的吸附較纖維素及未擠壓處理者有延緩作用,柳橙與金桔果渣經擠壓處理後其膽固醇微膠粒瓦解能力顯著(P < 0.05)高於未經擠壓處理者。柳橙與金桔吐司隨著果渣取代麵粉的量提高,其總面積及體積會隨之變小,而孔洞所占的面積百分比與硬度則隨著果渣取代麵粉的量提高,添加果渣明顯(P < 0.05)影響吐司色澤,柳橙與金桔果渣取代5%麵粉,其整體接受性在可接受程度以上。綜合以上結果,柳橙與金桔果渣經擠壓處理後比未擠壓處理者,更具有良好的理化特性及體外生理功能評估。
Orang (Citrus sinensis L. cv.) and calamondin (Citrus microcarpa Bonge) are important agricultural crops in Taiwan. After processing, a great quantity of pomace was produced. Pomace is rich in dietary fiber. It is worthwhile to deeply investigate the development and utilization of the pomace by different processing. The study was to investigate the optimization of extruded pomace derived from orange and calamondin using response surface methodology. Tested extrusion variables were barrel temperature (115C, 125C, 135C), moisture contents (10, 14, 18 g/100 g) and screw speed (230, 290, 350 rpm). Soluble dietary fiber content in each treatment group serves as an evaluable index to obtain optimal conditions. Meanwhile, the effect of extrusion processing on physicochemical properties of extrudates as well as in vitro physiological tests such as glucose absorption, cholesterol micelle solubility capacity and bile acid binding capacity of extrudates were also evaluated. Finally, the use of optimal extrusion conditions would further develop a high-fiber bakery product with nutritional function, and investigate its quality. The results showed that soluble dietary fiber content of extrudates was significantly influenced by above three variables. From calculation of regression equation, it showed that optimal extrusion condition: barrel temperature, moisture content, and screw speed of extruded orange pomace is 131.6C, 16 g/100 g and 304.8 rpm, respectively; while barrel temperature, moisture content, and screw speed of extruded calamondin pomace is 128.5C, 15.6 g/100 g , 298.1 rpm, respectively. The soluble dietary fiber contents of orange and calamondin pomace were 17.3% and 24.6%, respectively before extrusion. Processing conditions increased soluble dietary fiber content up to 29.8% and 40.0%, respectively for orange pomace and calamondin pomace. These pomace processed by single extruder significantly (P < 0.05) change the physicochemical properties such as bulk density, water-retention capacity, swelling property, cation-exchange capacity, water solubility index, dispersibility, emulsification activity, and gelation property in which they had higher properties than those before extrusion. The results of In vitro experiments indicate that orange and calamondin extrudates than the cellulose and non-extruded pomaces could effectively retard glucose absorption. Orange and calamondin pomace after extrusion was found to significantly (P < 0.05) decrease the amount of intact cholesterol-micelle than those without extrusion processing. Increased addition of extruded pomace into bread formulation resulted in decreases of total area and specific volume as well as increases of cell area and hardness. The substitution of extrude pomace into bread formulation at the level of 5% significantly (P < 0.05) influences the bread color, but sensory evaluation has indicated that the bread product are acceptable to the target audience. In conclusion, oranges and calamondin pomace by extrusion processing than those without extrusion, had good physicochemical properties and physiological functions in vitro.
摘要 I
Abstract III
誌謝 V
目錄 VI
前言 1
第壹章 文獻整理 3
一、金桔簡介 3
二、柳橙簡介 3
三、膳食纖維簡介 4
四、食品擠壓技術 12
五、反應曲面法 14
六、麵包製作方法 20
七、膳食纖維對麵包品質之影響 21
第貳章 材料與方法 23
一、材料與藥品 23
二、實驗儀器 24
三、實驗方法 25
第參章 結果與討論 47
第肆章 結論 100
第五章 參考文獻 102

行政院農業委員會農糧署。2013。果品生產概況。
行政院農業委員會農糧署。2013。農情報告。
行政院衛生署、國家衛生研究院。2010。臺灣營養狀況變遷調查。上網日期:2014 年7 月10 日,取自: http://nahsit.nhri.org.tw/
吳明穎。2009。金桔、檸檬與葡萄果渣纖維的理化特性及其應用之研究。大仁科技大學生物科技研究所。碩士論文。 屏東。
林欣諭。2011。龍眼殼與荔枝殼不溶性纖維理化性質及抗氧化能力之研究。國立高雄海洋科技大學水產食品科學研究所。碩士論文。
邱祝櫻。2001。秋季修剪及蔬果對四季橘產期及產量之影響。中國園藝。47:259-266。
高雄區農業改良場。2002。本土性金桔膏新產品開發。http://www.kdais.gov.tw/news/n91-37.htm 。
康佩慈。2007。鳳梨心高纖麵包研發與品質特性之探討。台南科技大學生活應用科學研究所。碩士論文。
張汶肇、卓家榮。2010。柳橙合理化施肥技術。臺南區農業改良場技術專刊。147:1-25。
張燕萍、謝良、徐愛國、鄭茂強。2007。食品加工技術。五南圖書出版股份有限公司。
梅新、木泰華、郭慶。2010。甘薯果膠的乳化特性研究。中國農業科學。43:(13)
陳克廉。1987。甘藷加工利用與質地特性之研究。國立台灣大學食品科技研究所。博士論文。
黃雅玲。2003。柳橙皮與百香果籽果渣纖維理化性質及生理活性之研究國立中興大學食品科學系。碩士論文。
衛生福利部統計處。2013。主要死因分析。
簡豪呈。2006。添加蔬果果渣對麵包烘焙影響之探討。中興大學食品暨應用生物科技學系。碩士論文。


AACC. (2001). The definition of dietary fiber. Cereal Foods World, 46(3), 112-126.
Abdul-Hamid, A., & Luan, Y. S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry, 68(1), 15-19.
Allaf, T., Tomao, V., Besombes, C., & Chemat, F. (2013). Thermal and mechanical intensification of essential oil extraction from orange peel via instant autovaporization. Chemical Engineering and Processing: Process Intensification, 72(0), 24-30.
Almeida, E. L., Chang, Y. K., & Steel, C. J. (2013). Dietary fibre sources in frozen part-baked bread: Influence on technological quality. LWT - Food Science and Technology, 53(1), 262-270.
Altan, A., McCarthy, K. L., & Maskan, M. (2008). Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. Journal of Food Engineering, 84(2), 231-242.
Anderson, R., Conway, H., Pfeifer, V., & Griffin, E. (1969). Gelatinization of corn grits by roll-and extrusion-cooking. Cereal Science Today, 14(1), 4-&.
AOAC. (2000). Official methods of analysis of AOAC international (17th ed.). Washington: Association of Official Analytical Chemists.
Athar, N., Hardacre, A., Taylor, G., Clark, S., Harding, R., & McLaughlin, J. (2006). Vitamin retention in extruded food products. Journal of Food Composition and Analysis, 19(4), 379-383.
Baghurst, P. A., Baghurst, K., & Record, S. (1996). Dietary fibre, non-starch polysaccharides and resistant starch: A review. Food Australia, 48(3), S3-S35.
Banga, J. R., Balsa-Canto, E., Moles, C. G., & Alonso, A. A. (2003). Improving food processing using modern optimization methods. Trends in Food Science & Technology, 14(4), 131-144.
BeMiller, J. N. (1986). An introduction to pectins: Structure and properties. ACS Symposium Series-American Chemical Society (USA),
Benítez, V., Mollá, E., Martín-Cabrejas, M. A., Aguilera, Y., López-Andréu, F. J., & Esteban, R. M. (2011). Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chemistry, 127(2), 501-507.
Bernstein, H., Bernstein, C., Payne, C., Dvorakova, K., & Garewal, H. (2005). Bile acids as carcinogens in human gastrointestinal cancers. Mutation Research/Reviews in Mutation Research, 589(1), 47-65.
Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455-475.
Box, G. E., & Wilson, K. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society.Series B (Methodological), 13(1), 1-45.
Box, G. E., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters.
Chau, C. F.(1998)。Nutritional values of three leguminous seeds and functional properties of their protein and fiber fractions. (Ph. D., The Chinese University of Hong Kong). , 80-85.
Chau, C., & Huang, Y. (2003). Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of citrus sinensis L. cv. liucheng. Journal of Agricultural and Food Chemistry, 51(9), 2615-2618.
Chau, C., Chen, C., & Lin, C. (2004). Insoluble fiber-rich fractions derived from averrhoa carambola: Hypoglycemic effects determined by in vitro methods. LWT - Food Science and Technology, 37(3), 331-335.
Chau, C., Cheung, P. C., & Wong, Y. (1997). Functional properties of protein concentrates from three chinese indigenous legume seeds. Journal of Agricultural and Food Chemistry, 45(7), 2500-2503.
Chen, H., Peng, L., Sheu, M., Lin, L., Chiang, H., Wu, C., Chen, Y. (2013). Effects of hot water treatment on the essential oils of calamondin. Journal of Food and Drug Analysis, 21(4), 363-368.
Chen, Y., Ye, R., Yin, L., & Zhang, N. (2014). Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. Journal of Food Engineering, 120, 1-8.
Chi, G., Hu, S., Yang, Y., & Chen, T. (2012). Response surface methodology with prediction uncertainty: A multi-objective optimisation approach. Chemical Engineering Research and Design, 90(9), 1235-1244.
Cochran, W. G., & Cox, G. M. (1957). Experimental designs .
Cornfine, C., Hasenkopf, K., Eisner, P., & Schweiggert, U. (2010). Influence of chemical and physical modification on the bile acid binding capacity of dietary fibre from lupins (Lupinus angustifolius L.). Food Chemistry, 122(3), 638-644.
Curti, E., Carini, E., Bonacini, G., Tribuzio, G., & Vittadini, E. (2013). Effect of the addition of bran fractions on bread properties. Journal of Cereal Science, 57(3), 325-332.
Dongowski, G. (2007). Interactions between dietary fibre-rich preparations and glycoconjugated bile acids in vitro. Food Chemistry, 104(1), 390-397.
Elleuch, M., Bedigian, D., Maazoun, B., Besbes, S., Blecker, C., & Attia, H. (2014). Improving halva quality with dietary fibres of sesame seed coats and date pulp, enriched with emulsifier. Food Chemistry, 145(0), 765-771.
Elleuch, M., Bedigian, D., Maazoun, B., Besbes, S., Blecker, C., & Attia, H. (2014). Improving halva quality with dietary fibres of sesame seed coats and date pulp, enriched with emulsifier. Food Chemistry, 145(0), 765-771.
Englyst, H. N., Quigley, M. E., & Hudson, G. J. (1994). Determination of dietary fibre as non-starch polysaccharides with gas–liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst, 119(7), 1497-1509.
Esposito, F., Arlotti, G., Maria Bonifati, A., Napolitano, A., Vitale, D., & Fogliano, V. (2005). Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Research International, 38(10), 1167-1173.
Fernandez-Gutierrez, J. A., Martin-Martinez, E. S., Martinez-Bustos, F., & Cruz-Orea, A. (2004). Physicochemical properties of casein–starch interaction obtained by extrusion process. Starch – Stärke, 56(5), 90-198.
Fernández‐López, J., Sendra‐Nadal, E., Navarro, C., Sayas, E., Viuda‐Martos, M., & Alvarez, J. A. P. (2009). Storage stability of a high dietary fibre powder from orange by‐products. International Journal of Food Science & Technology, 44(4), 748-756.
Giovanni, M. (1983). Response surface methodology and product optimization. Food Technology, 37(11), 41-45.
Gómez, M., Jiménez, S., Ruiz, E., & Oliete, B. (2011). Effect of extruded wheat bran on dough rheology and bread quality. LWT - Food Science and Technology, 44(10), 2231-2237.
Grover, G. J., Koetzner, L., Wicks, J., Gahler, R. J., Lyon, M. R., Reimer, R. A., & Wood, S. (2011). Effects of the soluble fiber complex PolyGlycopleX®(PGX®) on glycemic control, insulin secretion, and GLP-1 levels in Zucker diabetic rats. Life sciences, 88(9), 392-399.
Gui, Y., & Ryu, G. (2014). Effects of extrusion cooking on physicochemical properties of white and red ginseng (powder). Journal of Ginseng Research, 38(2), 146-153.
Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33(3–4), 233-245.
Guillon, F., Auffret, A., Robertson, J., Thibault, J., & Barry, J. (1998). Relationships between physical characteristics of sugar-beet fibre and its fermentability by human faecal flora. Carbohydrate Polymers, 37(2), 185-197.
Hamdan, D. I., Mahmoud, M. F., Wink, M., & El-Shazly, A. M. (2014). Effect of hesperidin and neohesperidin from bittersweet orange (Citrus aurantium var. bigaradia) peel on indomethacin-induced peptic ulcers in rats. Environmental Toxicology and Pharmacology, 37(3), 907-915.
Hasegawa, S., Bennett, R. D., Herman, Z., Fong, C. H., & Ou, P. (1989). Limonoid glucosides in citrus. Phytochemistry, 28(6), 1717-1720.
HIPSLEY, E. H. (1953). Dietary "fibre" and pregnancy toxaemia. British Medical Journal, 2(4833), 420-422.
Ho, L., Abdul Aziz, N. A., & Azahari, B. (2013). Physico-chemical characteristics and sensory evaluation of wheat bread partially substituted with banana (musa acuminata X balbisiana cv. awak) pseudo-stem flour. Food Chemistry, 139(1–4), 532-539.
Hong, Y., Zi-jun, W., Jian, X., Ying-jie, D., & Fang, M. (2012). Development of the dietary fiber functional food and studies on its toxicological and physiologic properties. Food and Chemical Toxicology, 50(9), 3367-3374.
Hromádková, Z., Ebringerová, A., Sasinková, V., Šandula, J., Hřı́balová, V., & Omelková, J. (2003). Influence of the drying method on the physical properties and immunomodulatory activity of the particulate (1→3)-β-D-glucan from Saccharomyces cerevisiae. Carbohydrate Polymers, 51(1), 9-15.
Isaksson, G., Lundquist, I., & Ihse, I. (1982). Effect of dietary fiber on pancreatic enzyme activity in vitro. Gastroenterology, 82(5 Pt 1), 918-924.
Jing, Y., & Chi, Y. (2013). Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue. Food Chemistry, 138(2), 884-889.
Kadan, R., Robinson, M., Thibodeaux, D., & Pepperman, A. (2001). Texture and other physicochemical properties of whole rice bread. Journal of Food Science, 66(7), 940-944.
Kahlon, T., & Woodruff, C. (2002). In vitro binding of bile acids by soy protein, pinto beans, black beans and wheat gluten. Food Chemistry, 79(4), 425-429.
Kim, J. H., Tanhehco, E. J., & Ng, P. K. W. (2006). Effect of extrusion conditions on resistant starch formation from pastry wheat flour. Food Chemistry, 99(4), 718-723.
Kirby, A. R., Ollett, A. -., Parker, R., & Smith, A. C. (1988). An experimental study of screw configuration effects in the twin-screw extrusion-cooking of maize grits. Journal of Food Engineering, 8(4), 247-272.
Lan, G., Chen, H., Chen, S., & Tian, J. (2012). Chemical composition and physicochemical properties of dietary fiber from polygonatum odoratum as affected by different processing methods. Food Research International, 49(1), 406-410.
Larrea, M. A., Chang, Y. K., & Martı́nez Bustos, F. (2005). Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chemistry, 89(2), 301-308.
Li, H., Long, D., Peng, J., Ming, J., & Zhao, G. (2012). A novel in-situ enhanced blasting extrusion technique — Extrudate analysis and optimization of processing conditions with okara. Innovative Food Science & Emerging Technologies, 16, 80-88.
López, G., Ros, G., Rincón, F., Periago, M., Martinez, M., & Ortuno, J. (1996). Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. Journal of Agricultural and Food Chemistry, 44(9), 2773-2778.
López-Vargas, J. H., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2013). Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Research International, 51(2), 756-763.
McCleary, B. V., Sloane, N., Draga, A., & Lazewska, I. (2013). Measurement of total dietary fiber using AOAC method 2009.01 (AACC international approved method 32-45.01): Evaluation and updates. Cereal Chemistry, 90(4), 396-414.
McDougall, G. J., Morrison, I. M., Stewart, D., & Hillman, J. R. (1996). Plant cell walls as dietary fibre: Range, structure, processing and function. Journal of the Science of Food and Agriculture, 70(2), 133-150.
Moraru, C., & Kokini, J. (2003). Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety, 2(4), 147-165.
Navarro-González, I., García-Valverde, V., García-Alonso, J., & Periago, M. J. (2011). Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Research International, 44(5), 1528-1535.
Onyango, C., Noetzold, H., Ziems, A., Hofmann, T., Bley, T., & Henle, T. (2005). Digestibility and antinutrient properties of acidified and extruded maize–finger millet blend in the production of uji. LWT-Food Science and Technology, 38(7), 697-707.
Ou, S., Kwok, K., Li, Y., & Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry, 49(2), 1026-1029.
Peerajit, P., Chiewchan, N., & Devahastin, S. (2012). Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chemistry, 132(4), 1891-1898.
Pourfarzad, A., Mahdavian-Mehr, H., & Sedaghat, N. (2013). Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT - Food Science and Technology, 50(2), 599-606.
Raederstorff, D. G., Schlachter, M. F., Elste, V., & Weber, P. (2003). Effect of EGCG on lipid absorption and plasma lipid levels in rats. The Journal of Nutritional Biochemistry, 14(6), 326-332.
Ragaee, S., Guzar, I., Dhull, N., & Seetharaman, K. (2011). Effects of fiber addition on antioxidant capacity and nutritional quality of wheat bread. LWT - Food Science and Technology, 44(10), 2147-2153.
Ralet, M., Della Valle, G., & Thibault, J. (1993). Raw and extruded fibre from pea hulls. part I: Composition and physico-chemical properties. Carbohydrate Polymers, 20(1), 17-23.
Redgwell, R., Curti, D., Robin, F., Donato, L., & Pineau, N. (2011). Extrusion-induced changes to the chemical profile and viscosity generating properties of citrus fiber. Journal of Agricultural and Food Chemistry, 59(15), 8272-8279.
Rees, D. A. (1969). Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Advances in Carbohydrate Chemistry and Biochemistry, 24, 267-332.
Repo-Carrasco-Valencia, R., Peña, J., Kallio, H., & Salminen, S. (2009). Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). Journal of Cereal Science, 49(2), 219-224.
Robin, F., Schuchmann, H. P., & Palzer, S. (2012). Dietary fiber in extruded cereals: Limitations and opportunities. Trends in Food Science & Technology, 28(1), 23-32.
Rosa, N. N., Barron, C., Gaiani, C., Dufour, C., & Micard, V. (2013). Ultra-fine grinding increases the antioxidant capacity of wheat bran. Journal of Cereal Science, 57(1), 84-90.
Rosell, C. M., & Foegeding, A. (2007). Interaction of hydroxypropylmethylcellulose with gluten proteins: Small deformation properties during thermal treatment. Food Hydrocolloids, 21(7), 1092-1100.
Rossen, J. L., & Miller, R. C. (1973). Food extrusion. Food Technology, 27(8), 46.
Saalia, F. K., & Phillips, R. D. (2011). Degradation of aflatoxins by extrusion cooking: Effects on nutritional quality of extrudates. LWT - Food Science and Technology, 44(6), 1496-1501.
Sánchez-Zapata, E., Muñoz, C. M., Fuentes, E., Fernández-López, J., Sendra, E., Sayas, C., Navarro, J.A., Pérez-Alvarez. & Pérez-Alvarez, J. A. (2010). Effect of tiger nut fibre on quality characteristics of pork burger. Meat Science, 85(1), 70-76.
Sanz-Penella, J. M., Wronkowska, M., Soral-Smietana, M., & Haros, M. (2013). Effect of whole amaranth flour on bread properties and nutritive value. LWT - Food Science and Technology, 50(2), 679-685.
Schneeman, B. O. (1986). Dietary fiber: Physical and chemical properties, methods of analysis, and physiological effects. Food Technology,
Searcy, R. L., & Bergquist, L. M. (1960). A new color reaction for the quantitation of serum cholesterol. Clinica Chimica Acta, 5(2), 192-199.
Sharma, S. K., Liptay, A., & Le Maguer, M. (1997). Molecular characterization, physico-chemical and functional properties of tomato fruit pectin. Food Research International, 30(7), 543-547.
Srichamroen, A., & Chavasit, V. (2011). In vitro retardation of glucose diffusion with gum extracted from malva nut seeds produced in thailand. Food Chemistry, 127(2), 455-460.
Stojceska, V., Ainsworth, P., Plunkett, A., & İbanoğlu, Ş. (2009). The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chemistry, 114(1), 226-232.
Theuwissen, E., & Mensink, R. P. (2008). Water-soluble dietary fibers and cardiovascular disease. Physiology & Behavior, 94(2), 285-292.
Thompson, D. (1982). Response surface experimentation1. Journal of Food Processing and Preservation, 6(3), 155-188.
Trowell, H. (1976). Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases. The American Journal of Clinical Nutrition, 29(4), 417-427.
Tudorica, C., Kuri, V., & Brennan, C. (2002). Nutritional and physicochemical characteristics of dietary fiber enriched pasta. Journal of Agricultural and Food Chemistry, 50(2), 347-356.
Villanueva, M. J., Yokoyama, W. H., Hong, Y. J., Barttley, G. E., & Rupérez, P. (2011). Effect of high-fat diets supplemented with okara soybean by-product on lipid profiles of plasma, liver and faeces in syrian hamsters. Food Chemistry, 124(1), 72-79.
Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., Sayas-Barberá, C., Navarro, J.A., Pérez-Álvarez. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110(2), 220-224.
Wanasundara, P., & Shahidi, F. (1996). Optimization of Hexametaphosphate‐Assisted extraction of flaxseed proteins using response surface methodology. Journal of Food Science, 61(3), 604-607.
Wang, J., Rosell, C. M., & Benedito de Barber, C. (2002). Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chemistry, 79(2), 221-226.
Zhang, M., Bai, X., & Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98-103.
Zhang, N., Huang, C., & Ou, S. (2011). In vitro binding capacities of three dietary fibers and their mixture for four toxic elements, cholesterol, and bile acid. Journal of Hazardous Materials, 186(1), 236-239.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top