跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志謙
研究生(外文):Chih-Chien Chang
論文名稱:探討動力鏈運動介入對於肩胛運動障礙排球員於疼痛及動作表現之療效
論文名稱(外文):Effects of Kinetic Chain Exercise Intervention on Pain and Motor Performance in Volleyball Players with Scapular Dyskinesis
指導教授:施怡芬施怡芬引用關係
指導教授(外文):Yi-Fen Shih
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:124
中文關鍵詞:排球肩胛運動障礙肩部疼痛動力鏈運動
外文關鍵詞:VolleyballScapular dyskinesisShoulder painKinetic chain exercise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:630
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:在排球運動中,肩關節是第三常見的受傷肢段,且絕大部分都是由於慢性的動作缺陷所造成。肩胛骨異常的位置或是動作都可能造成肩胛運動障礙 (scapular dyskinesis,又稱「生病的」肩胛),進而產生其他肩關節帶(shoulder girdle)的損傷。傳統上針對肩胛運動障礙的運動治療主要著重在肩關節帶的訓練,但部分的學者認為動力鏈(kinetic chain)的運動訓練更為有效益。然而,目前並沒有研究比較此兩種介入方式的效果差異。
研究目的:本篇研究為針對患有肩胛運動障礙的排球運動員,比較利用兩種為期四週的運動介入(動力鏈運動訓練、傳統肩關節帶訓練),於肩膀疼痛程度以及動作表現的效果。
研究方法:共計有34位患有肩胛運動障礙及慢性肩痛的排球運動員被納入研究,並且隨機分派至動力鏈運動介入組(kinetic chain exercise intervention group, KC)(12男5女,年齡:23.71±3.12歲)以及傳統訓練組(conventional training of Scapular dyskinesis, CT)(13男4女,年齡24.29±3.44歲),受試者分別接受由治療師指導之為期四週的動力鏈運動訓練(KC組)或是傳統肩關節帶肌力訓練(CT組)。受試者於實驗室的配置下扣固定高度之排球30下,同時分別利用電磁場動作追蹤系統(LIBETY™)和無線表面肌電圖系統(TELEmyo 2400T G2),記錄動作學(kinematics)(包含肩水平內收,肩胛前傾、內轉、上轉,以及上半軀幹屈曲、側彎及旋轉)和肩胛肌肉活化(muscle activation)(包含上下斜方肌以及前鋸肌)訊號,並取用最大肩關節屈曲(T1)以及扣球瞬間(T2)時間點之資料作為分析,比較組間之差異。另外,扣球過程中肩胛骨的動作一致性以本體感覺回饋量值(Proprioceptive Feedback Magnitude, PFM)作計算,視覺化疼痛量表(Visual Analogue Scale, VAS)則用於自我疼痛程度檢測。
統計分析:利用SPSS軟體(20.0版)做分析,所有的資料都使用意向分析(intention-to-treat)處理。針對受試者基本資料的部分,利用獨立t檢定或是卡方檢定作分析。以二因子重覆測量變異數分析(repeated measures analysis of variances)(ANOVAs,時間×組別)分析所有的結果資料,若有顯著的時間*組別交互作用或是時間效應,則進一步利用Bonferroni事後檢定作分析。此研究之顯著水準定在0.05。
研究結果:由重覆測量變異數分析可以發現,T2時的上半驅幹旋轉(p = 0.03)以及肩胛動作一致性(p = 0.03)有顯著的時間*組別交互作用,而在VAS分數(p < 0.001)、T2時的肩胛上轉(p = 0.02),以及T1時的肩胛動作一致性(p = 0.02)也有顯著的時間效應。於T2時,KC組較CT組更為增加上半驅幹向對側旋轉之角度(-5.75±7.31° 與 -12.18±6.98°),且肩胛動作一致性也較高(動作誤差:5.08±11.89° 與 22.67±12.76°)。
研究結論:本篇為首篇探討對於肩部疼痛排球員,分別以傳統肩關節帶以及動力鏈為主的介入之療效研究。結果顯示,經過四週訓練後,兩種治療皆能有效降低疼痛,且皆能於最大肩關節屈曲的瞬間增加肩胛上轉之角度。另外,與傳統訓練相比之下,動力鏈運動介入能更為有效地增加扣球過程中的肩胛動作一致性,且動力鏈運動介入也較傳統訓練顯著增加扣球瞬間時上半軀幹向對側旋轉的角度,此項結果也許和更佳的軀幹核心控制有關。未來相關領域之研究可增加更多的樣本數,並深入探討動力鏈運動治療的對於軀幹肌肉活化的效果。
BACKGROUND: Shoulder is the 3rd-most commonly injured segment in volleyball players, with the majority resulting from chronic movement deficits. Scapular abnormal position and movement could lead to dyskinesis (SICK scapula), causing further shoulder girdle injuries. For treating scapular dyskinesis (SD), conventional intervention focuses on strengthening of shoulder girdle muscles, while some researchers consider that kinetic chain rehabilitation would be more beneficial. However, there was no study comparing the effects between these two interventions.
PURPOSES: The aim of this study is to compare the effects of two 4-week exercise programs, kinetic chain exercise training (KC) and conventional training (CT), on shoulder pain and motor performance in volleyball players with SD.
MATERIAL AND METHODS: Thirty-four volleyball players with scapular dyskinesia and chronic shoulder pain were enrolled and randomly allocated into the KC (12M 5F, age: 23.71±3.12) and CT group (13M 4F, age: 24.29±3.44). Participants received four weeks of supervised kinetic-chain-based exercise training (KC group) or the shoulder-girdle-based training (CT group). Outcome assessment involved 30 volleyball spikes in the laboratory setting, the kinematics (shoulder horizontal adduction, scapula anterior tilt, internal rotation, upward rotation, and upper trunk flexion, side-bending, and rotation) and scapular muscle activation (upper and lower trapezius, and serratus anterior) were recorded using the electromagnetic motion tracking system (LIBERTY™) and the wireless surface electromyographic (sEMG) system (TELEmyo 2400T G2) respectively. The data at the occurrence of maximal shoulder flexion (T1) and ball contact (T2) was analyzed and compared between groups. The Proprioceptive Feedback Magnitude (PFM) was calculated for assessing scapular movement consistency. Visual Analogue Scale (VAS) was used to measure self-reported pain.
STATISTICAL ANALYSIS: Data were analyzed on intention-to-treat basis using the SPSS software (version 20.0). The independent t test or Chi-square test were used to compare the baseline demographic data. The two-way repeated measures analysis of variances (ANOVAs) were used to compare outcome variables. The variables showing significant time by group interactions or time effects were further analyzed using the Bonferroni post hoc test. The alpha (α) level was set at 0.05.
RESULTS: The repeated measures ANOVA showed a significant time by group interaction for the upper trunk rotation (p = 0.03) and scapular movement consistency (p = 0.03) at T2. There were also time effects for VAS score (p < 0.001), scapular upward rotation at T2 (p = 0.02), and movement consistency at T1 (p = 0.02). The KC group showed increased contralateral rotation of the upper trunk at T2 (-5.75±7.31° vs. -12.18±6.98°), and a better movement consistency at T2 (movement error: 5.08±11.89° vs. 22.67±12.76°) as compared to the CT group.
CONCLUSION: This is the first RCT study comparing the effect of the KC and CT protocols, investigating the effect of shoulder-girdle- and kinetic-chain-based training in volleyball player with shoulder pain. After 4 weeks, both protocols were equally effective for decreasing self-reported pain and increasing scapular upward rotation at ball contact during volleyball spikes. Compared to the conventional training, the kinetic chain exercise program was more effective for increasing scapular movement consistency during volleyball spikes. The significant increased upper trunk contralateral rotation at ball contact was also noted in participants involved in the kinetic chain exercise program, which may represent a better core dynamic stability of the trunk. Future study in this field may recruit more participants and put more focus on the change of muscle activation of the trunk muscles after the training programs
誌謝 (Acknowledgement) i
Contents ii
List of Tables iv
List of Figures vi
List of Appendices vii
摘要 (Chinese Abstract) viii
Abstract xi
Chapter 1: Introduction 1
1.1 Background 1
1.2 Importance of the Study 4
1.3 Study Purpose 5
1.4 Study Hypothesis 6
Chapter 2: Literature Review 7
2.1 Volleyball-related Shoulder Injuries and Related Motion Analysis 7
2.2 The “Kinetic Chain” in Volleyball 11
2.3 Rehabilitation of Scapular Dyskinesis 14
Chapter 3: Methods 17
3.1 Study Design 17
3.2 Participants and Randomization 18
3.3 Outcome Measures & Instrumentation 21
3.4 Procedures 23
3.4.1 Participants Enrollment 23
3.4.2 Laboratory Settings 24
3.4.3 Data Collection and the Spiking Task 27
3.5 Exercise Intervention 30
3.6 Data Management 32
3.7 Statistical Analysis 35
Chapter 4: Results 36
4.1 Baseline Demographic Data 36
4.2 Self-reported Pain 38
4.3 Kinematics 39
4.4 Muscle Activation and Ratios 40
4.5 Scapular Movement Consistency 41
Chapter 5: Discussion 42
5.1 Effects on Self-reported Pain 43
5.2 Effects on Kinematics 45
5.3 Effects on Muscle Activation and Ratios 49
5.4 Effects on Scapular Movement Consistency 51
5.5 Limitation 52
Chapter 6: Conclusion 54
References 55
Tables 64
Figures 88
Appendices 102

List of Tables
Table 1. The inclusion/exclusion criteria for participants 65
Table 2. Definition of local coordinated system in this study 66
Table 3. Program of the kinetic chain exercise intervention (KC) 67
Table 4. Program of the conventional exercise intervention (CT) 68
Table 5. Baseline demographic data 69
Table 6. Results of self-reported pain measurement 70
Table 7. Repeated measures analysis of variance (ANOVA) for self-reported pain 71
Table 8. Post hoc test for self-reported pain 72
Table 9. Results of mean kinematics data 73
Table 10. Repeated measures analysis of variance (ANOVA) for kinematics at maximal shoulder flexion (T1) 75
Table 11. Repeated measures analysis of variance (ANOVA) for kinematics at ball contact (T2) 77
Table 12. Results of mean muscle activation data 79
Table 13. Repeated measures analysis of variance (ANOVA) for muscle activation at maximal shoulder flexion (T1) 80
Table 14. Repeated measures analysis of variance (ANOVA) for muscle activation at ball contact (T2) 81
Table 15. Results of mean muscle activation ratios 82
Table 16. Repeated measures analysis of variance (ANOVA) for muscle activation ratios at maximal shoulder flexion (T1) 83
Table 17. Repeated measures analysis of variance (ANOVA) for muscle activation ratios at ball contact (T2) 84
Table 18. Results of mean scapular movement consistency 85
Table 19. Repeated measures analysis of variance (ANOVA) for scapular movement consistency at maximal shoulder flexion (T1) 86
Table 20. Repeated measures analysis of variance (ANOVA) for scapular movement consistency at ball contact (T2) 87

List of Figures
Figure 1. The phases & key events of the volleyball spike 89
Figure 2. The flowchart of this study 90
Figure 3. The laboratory setting 91
Figure 4. The procedure of data collection 92
Figure 5. Sensors’ placement 93
Figure 6. Upper trapezius (UT) maximal voluntary isometric contraction (MVIC) test position 94
Figure 7. Lower trapezius (LT) maximal voluntary isometric contraction (MVIC) test position 95
Figure 8. Serratus anterior (SA) maximal voluntary isometric contraction (MVIC) test position 96
Figure 9. Program of the kinetic chain exercise intervention (KC) 97
Figure 10. Program of the conventional exercise intervention (CT) 99
Figure 11. Results of mean Visual Analog Scores (VAS) measures 101

List of Appendices
Appendix I. Institutional Review Board (IRB) of National Yang-Ming University 103
Appendix II. Participants’ consent form 105
Appendix III. Evaluation form for participants’ screening 110
Appendix IV. Pilot Study: Spiking Movement of Scapula 112
 Table 1. Inclusion/Exclusion criteria of participants 115
 Table 2. Baseline demographic data (I) 116
 Table 3. Between-days intra-rater reliability of kinematics measurement 117
 Table 4. Between-days intra-rater reliability of muscle activation measurement 119
 Table 5. Baseline demographic data (II) 120
 Table 6. Results of kinematics data 121
 Table 7. Results of muscle activation data 123
 Table 8. Results of scapular movement consistency 124
1. Challoumas D, Artemiou A, Dimitrakakis G. Dominant vs. non-dominant shoulder morphology in volleyball players and associations with shoulder pain and spike speed. J Sports Sci 2016; 35(3):65-73.
2. Reeser JC, Fleisig GS, Bolt B, Ruan M. Upper limb biomechanics during the volleyball serve and spike. Sports Health 2010; 2(5):368-74.
3. Pfeiffer RP, Shea KG, Roberts D, Grandstrand S, Bond L. Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J Bone Joint Surg Am 2006; 88(8):1769-74.
4. Murray JJ, Renier CM, Ahern JJ, Elliott BA. Neuromuscular training availability and efficacy in preventing anterior cruciate ligament injury in high school sports: A retrospective cohort study. Clin J Sport Med 2017; 27(6):524-9.
5. Costantino C, Bertuletti S, Romiti D. Efficacy of Whole-Body Vibration Board Training on Strength in Athletes After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Study. Clin J Sport Med 2018; 28(4):339-349.
6. De Mey K, Danneels L, Cagnie B, Cools AM. Scapular muscle rehabilitation exercises in overhead athletes with impingement symptoms: Effect of a 6-week training program on muscle recruitment and functional outcome. Am J Sports Med 2012; 40(8):1906-15.
7. Nagai K, Tateuchi H, Takashima S, Miyasaka J, Hasegawa S, Arai R, et al. Effects of trunk rotation on scapular kinematics and muscle activity during humeral elevation. J Electromyogr Kinesiol 2013; 23(3):679-87.
8. Ludewig PM, Reynolds JF. The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther 2009; 39(2):90-104.
9. Burn MB, McCulloch PC, Lintner DM, Liberman SR, Harris JD. Prevalence of scapular dyskinesis in overhead and nonoverhead athletes: a systematic review. Orthop J Sports Med 2016; 4(2):2325967115627608.
10. Tucker WS, Armstrong CW, Gribble PA, Timmons MK, Yeasting RA. Scapular muscle activity in overhead athletes with symptoms of secondary shoulder impingement during closed chain exercises. Arch Phys Med Rehabil 2010; 91(4):550-6.
11. Reeser JC, Joy EA, Porucznik CA, Berg RL, Colliver EB, Willick SE. Risk factors for volleyball-related shoulder pain and dysfunction. PM R 2010; 2(1):27-36.
12. Cools AM, Dewitte V, Lanszweert F, Notebaert D, Roets A, Soetens B, et al. Rehabilitation of scapular muscle balance: which exercises to prescribe? Am J Sports Med 2007; 35(10):1744-51.
13. Struyf F, Nijs J, Mollekens S, Jeurissen I, Truijen S, Mottram S, et al. Scapular-focused treatment in patients with shoulder impingement syndrome: A randomized clinical trial. Clin Rheumatol 2013; 32(1):73-85.
14. Buttagat V, Taepa N, Suwannived N, Rattanachan N. Effects of scapular stabilization exercise on pain related parameters in patients with scapulocostal syndrome: A randomized controlled trial. J Bodyw Mov Ther 2016; 20(1):115-22.
15. Moura KF, Monteiro RL, Lucareli PRG, Fukuda TY. Rehabilitation of subacromial pain syndrome emphasizing scapular dyskinesis in amateur athletes: A case series. Int J Sports Phys Ther 2016; 11(4):552-563.
16. Cools AM, Struyf F, De Mey K, Maenhout A, Castelein B, Cagnie B. Rehabilitation of scapular dyskinesis: From the office worker to the elite overhead athlete. Br J Sports Med 2014; 48(8):692-7.
17. Diercks R, Bron C, Dorrestijn O, Meskers C, Naber R, de Ruiter T, et al. Guideline for diagnosis and treatment of subacromial pain syndrome: A multidisciplinary review by the dutch orthopaedic association. Acta Orthop 2014; 85(3):314-22.
18. McMullen J, Uhl TL. A kinetic chain approach for shoulder rehabilitation. J Athl Train 2000; 35(3):329-37.
19. Sciascia A, Cromwell R. Kinetic chain rehabilitation: a theoretical framework. Rehabil Res Pract 2012; 2012:853037.
20. Chu SK, Jayabalan P, Kibler WB, Press J. The kinetic chain revisited: new concepts on throwing mechanics and injury. PM R 2016; 8(3 Suppl):S69-77.
21. Kaur N, Bhanot K, Brody LT, Bridges J, Berry DC, Ode JJ. Effects of lower extremity and trunk muscles recruitment on serratus anterior muscle activation in healthy male adults. Int J Sports Phys Ther 2014; 9(7):924-37.
22. Yamauchi T, Hasegawa S, Matsumura A, Nakamura M, Ibuki S, Ichihashi N. The effect of trunk rotation during shoulder exercises on the activity of the scapular muscle and scapular kinematics. J Shoulder Elbow Surg 2015; 24(6):955-64.
23. Tsuruike M, Ellenbecker TS. Serratus anterior and lower trapezius muscle activities during multi-joint isotonic scapular exercises and isometric contractions. J Athl Train 2015; 50(2):199-210.
24. Michener LA, Sharma S, Cools AM, Timmons MK. Relative scapular muscle activity ratios are altered in subacromial pain syndrome. J Shoulder Elbow Surg 2016; 25(11):1861-7.
25. Kibler WB, Sciascia A. Current concepts: scapular dyskinesis. Br J Sports Med 2010; 44(5):300-5.
26. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology Part III: The SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy 2003; 19(6):641-61.
27. Wang YC. Spiking kinematics in vollyball players with shoulder pain [Research Thesis]. Taipei, Taiwan: Department of Physical Therapy and Assistive Technology, National Yang Ming University; 2012.
28. Mitchinson L, Campbell A, Oldmeadow D, Gibson W, Hopper D. Comparison of upper arm kinematics during a volleyball spike between players with and without a history of shoulder injury. J Appl Biomech 2013; 29(2):155-64.
29. Myers JB, Wassinger CA, Lephart SM. Sensorimotor contribution to shoulder stability: Effect of injury and rehabilitation. Man Ther 2006; 11(3):197-201.
30. Mottram SL. Dynamic stability of the scapula. Man Ther 1997; 2(3):123-31.
31. Sahin E, Dilek B, Baydar M, Gundogdu M, Ergin B, Manisali M, et al. Shoulder proprioception in patients with subacromial impingement syndrome. J Back Musculoskelet Rehabil 2017; 30(4):857-62.
32. Escamilla RF, Andrews JR. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med 2009; 39(7):569-90.
33. Steindler A. Kinesiology of the Human Body Under Normal and Pathological Conditions. 2nd ed. IL, USA: Charles C. Thomas; 1955.
34. Kibler WB. Clinical biomechanics of the elbow in tennis: Implications for evaluation and diagnosis. Med Sci Sports Exerc 1994; 26(10):1203-6.
35. Blazevich AJ. Sports biomechanics, the basics: optimising human performance. 2nd ed. OH, USA: A&C Black; 2010.
36. Sciascia A, Thigpen C, Namdari S, Baldwin K. Kinetic chain abnormalities in the athletic shoulder. Sports Med Arthrosc 2012; 20(1):16-21.
37. Moezy A, Sepehrifar S, Solaymani Dodaran M. The effects of scapular stabilization based exercise therapy on pain, posture, flexibility and shoulder mobility in patients with shoulder impingement syndrome: A controlled randomized clinical trial. Med J Islam Repub Iran 2014; 28:87
38. Prokopy MP, Ingersoll CD, Nordenschild E, Katch FI, Gaesser GA, Weltman A. Closed-kinetic chain upper-body training improves throwing performance of NCAA Division I softball players. J Strength Cond Res 2008; 22(6):1790-8.
39. Turgut E, Duzgun I, Baltaci G. Effects of scapular stabilization exercise training on scapular kinematics, disability, and pain in subacromial impingement: A randomized controlled trial. Arch Phys Med Rehabil 2017; 98(10):1915-23 e3.
40. Huang TS, Huang CY, Ou HL, Lin JJ. Scapular dyskinesis: Patterns, functional disability and associated factors in people with shoulder disorders. Man Ther 2016; 26:165-71.
41. Uhl TL, Kibler WB, Gecewich B, Tripp BL. Evaluation of clinical assessment methods for scapular dyskinesis. Arthroscopy 2009; 25(11):1240-8.
42. D'hondt NE, Kiers H, Pool JJ, Hacquebord ST, Terwee CB, Veeger DH. Reliability of performance-based clinical measurements to assess shoulder girdle kinematics and positioning: systematic review. Phys Ther 2017; 97(1):124-44.
43. Hsu YH, Chen WY, Lin HC, Wang WT, Shih YF. The effects of taping on scapular kinematics and muscle performance in baseball players with shoulder impingement syndrome. J Electromyogr Kinesiol 2009; 19(6):1092-9.
44. Lin JJ, Hung CJ, Yang PL. The effects of scapular taping on electromyographic muscle activity and proprioception feedback in healthy shoulders. J Orthop Res 2011; 29(1):53-7.
45. Mendez-Rebolledo G, Gatica-Rojas V, Martinez-Valdes E, Xie HB. The recruitment order of scapular muscles depends on the characteristics of the postural task. J Electromyogr Kinesiol 2016; 31:40-7.
46. Boettcher CE, Ginn KA, Cathers I. Standard maximum isometric voluntary contraction tests for normalizing shoulder muscle EMG. J Orthop Res 2008; 26(12):1591-7.
47. Lin YL, Karduna A. Exercises focusing on rotator cuff and scapular muscles do not improve shoulder joint position sense in healthy subjects. Hum Mov Sci 2016; 49:248-57.
48. Dannelly BD, Otey SC, Croy T, Harrison B, Rynders CA, Hertel JN, et al. The effectiveness of traditional and sling exercise strength training in women. J Strength Cond Res 2011; 25(2):464-71.
49. Clark MA, Lucett SC, Sutton BG. NASM essentials of corrective exercise training (Revised). 1st ed. MA, USA: Jones and Bartlett Learning; 2014.
50. Wilk KE, Arrigo CA, Hooks TR, Andrews JR. Rehabilitation of the overhead throwing athlete: There is more to it than just external rotation/internal rotation strengthening. PM R 2016; 8(3 Suppl):S78-90.
51. Baskurt Z, Baskurt F, Gelecek N, Ozkan MH. The effectiveness of scapular stabilization exercise in the patients with subacromial impingement syndrome. J Back Musculoskelet Rehabil 2011; 24(3):173-9.
52. Hotta GH, Santos AL, McQuade KJ, de Oliveira AS. Scapular-focused exercise treatment protocol for shoulder impingement symptoms: Three-dimensional scapular kinematics analysis. Clin Biomech (Bristol, Avon) 2018; 51:76-81.
53. Wagner H, Pfusterschmied J, Tilp M, Landlinger J, von Duvillard SP, Muller E. Upper-body kinematics in team-handball throw, tennis serve, and volleyball spike. Scand J Med Sci Sports 2014; 24(2):345-54.
54. Serrien B, Ooijen J, Goossens M, Baeyens J. A motion analysis in the volleyball spike - Part 1: Three dimensional kinematics and performance. Int J Hum Mov Sports Sci 2016; 4(4):70-82.
55. McClure PW, Bialker J, Neff N, Williams G, Karduna A. Shoulder function and 3-dimensional kinematics in people with shoulder impingement syndrome before and after a 6-week exercise program. Phys Ther 2004; 84(9):832-48.
56. Camargo PR, Alburquerque-Sendín F, Avila MA, Haik MN, Vieira A, Salvini TF. Effects of stretching and strengthening exercises, with and without manual therapy, on scapular kinematics, function, and pain in individuals with shoulder impingement: A randomized controlled trial. J Orthop Sports Phys Ther 2015; 45(12):984-97.
57. Worsley P, Warner M, Mottram S, Gadola S, Veeger HE, Hermens H, et al. Motor control retraining exercises for shoulder impingement: Effects on function, muscle activation, and biomechanics in young adults. J Shoulder Elbow Surg 2013; 22(4):e11-9.
58. Lin YL, Karduna A. Four-week exercise program does not change rotator cuff muscle activation and scapular kinematics in healthy subjects. J Orthop Res 2016; 34(12):2079-88.
59. Yang JL, Chen S, Jan MH, Lin YF, Lin JJ. Proprioception assessment in subjects with idiopathic loss of shoulder range of motion: joint position sense and a novel proprioceptive feedback index. J Orthop Res 2008; 26(9):1218-24.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top