跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.42) 您好!臺灣時間:2025/10/01 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:譚詠雪
研究生(外文):TAN, YUNG-HSUEH
論文名稱:應用糯米砂漿工法於產品設計之研究
論文名稱(外文):A Study on Using Sticky Rice Lime Mortar in Product Design
指導教授:王則眾王則眾引用關係
指導教授(外文):WANG, CHE-CHUNG
口試委員:丑宛茹吳志富王則眾
口試委員(外文):CHOU, WAN-RUWU, CHIH-FUWANG, CHE-CHUNG
口試日期:2019-07-12
學位類別:碩士
校院名稱:實踐大學
系所名稱:工業產品設計學系碩士在職專班
學門:設計學門
學類:產品設計學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:107
中文關鍵詞:砂漿糯米砂漿石灰配比產品設計友善環境
外文關鍵詞:Lime MortarSticky Rice Lime MortarSlaked LimeRatioProduct DesignEco Friendly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:2
本研究發想來自於環境議題中二氧化碳與環境間的交互關係,藉由古式建築磚砌黏著及古蹟維護應用的糯米砂漿作為其創作材料研究。以糯米砂漿中石灰材料之化學反應效能,吸收自然界中二氧化碳進行表層碳酸化反應,進而促使材料硬化。研究初始透過相關文獻蒐集,總整糯米砂漿之材料組成、技法、配比及相關,接續透過田口研究方法中直交表,分別進行耐磨耗及抗衝擊試驗,推演出糯米砂漿材質之優化配比。實驗結果顯示糯米砂漿之組成材料以糯米漿參數影響為甚,在砂漿製程中適以添加石灰重之0.4倍混合,及養護齡期對於材料優化有極大的考量因素。
在糯米砂漿材質配比調整上參考羅馬砂漿之組成材料,加強砂漿材料優化,並依據不同組成成份的混合,進行糯米砂漿收縮率調整。技法的運用上,除藉由演算優化材質配比作為主體進行塑形之外,也藉由灰泥技法將砂漿以塗料方式結合布料塑形應用呈現。另,於創作過程中,發掘出(1) 添加天然色粉調整砂漿色澤、(2) 另製成生物可降解黏土來取代原有黏土、(3) 以混合懸浮液取代糯米漿來縮短製程時間,及(4) 將優化改良後的糯米砂漿運用於生活之中。本創作主軸以「共生」、「自然意象」及「形式創作」做為其創作發想,反推探討古人如何友善環境、因地制宜,以生活中之物品進行創作發想;藉由砂漿對於二氧化碳的需求,來達到吸附效果,讓環境中的有害物質減少,降低二氧化碳,讓自然界得以永續下去。

The research is inspired from the interaction between carbon dioxide and the environment within environmental issues, using sticky rice lime mortar applied in ancient architecture brickworks and historic sites maintenance as the material for researching. The process of brickworks is to make use of the chemical reaction of lime materials, which is absorbing carbon dioxide in natural environment and process surface carbonation to harden materials. This research integrates the material composition, techniques, proportionality and such, optimizing proportionality with Taguchi method Orthogonal Arrays, to undergo wear resistance and impact resistance tests. The experimental evidence has shown two results. Examining both experiment results, it is concluded that among all sticky rice lime mortar compositions, glutinous rice serum parameter affects the most. During the making of mortar, adding 0.4 times lime weight of glutinous rice serum to compound is the most appropriate. What follows is that extended the mortar curing ages brings great influence towards material optimization.
Regarding proportionality adjustments, the ingredients of Roman concrete are taken as references to enhance mortar soundness optimization. According to different compositions, the shrinkage rate of sticky rice mortar will be adjusted. In terms of techniques application, besides optimizing proportionality by calculating as subjects of shaping, stucco technique is also applied, using mortar as coating, to fabric shaping application. During the production process, adding natural colors to adjust mortar original colors, manufacturing biodegradable clay to replace the original one, substituting glutinous rice serum with suspension to shorten production time and applying optimized sticky rice lime mortar in daily life are all included. Symbiosis, nature imagery and form are the mainstays of the thesis, back stepping to explore how ancient people can be eco-friendly, adaptable and inspired by items within their life. The need that mortar has for carbon dioxide can achieve adsorption effect, and further decrease hazardous substance in the environment, reduce carbon dioxide and sustain the nature.

中文摘要 ⅰ
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 2
1.1 創作背景 2
1.2 創作動機 3
1.3 創作目的 3
1.4 創作架構 4
1.5 創作範圍 6
第二章 文獻探討 8
2.1 糯米砂漿歷史與近期發展 8
2.1.1 糯米砂漿組成材料 9
2.1.2糯米砂漿技法 15
2.1.3 砂漿優化配比 17
2.2 產品設計的形式創作 19
2.2.1 永續設計 20
2.2.2 友善環境 21
2.3 文獻小結 22
第三章 創作方法與流程 24
3.1 以田口法直交表演算最優化配比 24
3.2 砂漿製程添加材料 28
3.2.1 材料 28
3.2.2 使用工具 36
3.3 砂漿製程 39
第四章 實驗結果及創作內容 43
4.1 材料實驗結果 43
4.2 設計創作一:新舊共生 47
4.2.1 設計概念 47
4.2.2 設計呈現 48
4.2.3 設計流程 49
4.2.4 設計發展 54
4.3 設計創作二:自然意象—共生 56
4.3.1 設計概念 57
4.3.2 設計呈現 57
4.3.3 設計流程 58
4.3.4 設計發展 62
4.4 設計創作三:物件組成–形式 63
4.4.1 設計概念 63
4.4.2 設計呈現 64
4.4.3 創作流程 68
4.4.4 創作發展 71
第五章 創作結果與討論 73
5.1 糯米砂漿材料調整 73
5.2 砂漿創作的表現方式 76
5.3 顏色調整在糯米砂漿上的應用 81
5.4 產品未來發展可行性 85
第六章 結論 89
參考文獻 91
作者簡介 99


1.Anderson. . Soils to Engineering Technology to Cat Litter, USC Mineralogy Geol 215a.
2.Armstrong, R. (2009). Architecture that repairs itself? Retrieved from https://www.ted.com/talks/rachel_armstrong_architecture_that_repairs_itself
3.B. S. (1981). Mortars, Cemeilts and Grouts used in the Conservation of Historic Buildings. Paper presented at the ICCROM, Rome.
4.Baer, N., Fitz, S., & Livingstone, R. A. (2015). Conservation of Historic Brick Structures. Routledge.
5.Bagci, E., & Aykut, Ş. (2006). A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6) (Vol. 29).
6.Brozyna, K., Davis, G., & Rapport, A. Measure Guideline: Transitioning from Three-Coat Stucco to One-Coat Stucco with EPS. United States. doi:10.2172/1043763.
7.Carlo Scarpa: The Complete Works by Electa/Rizzoli: Electa/Rizzoli 9780847805914 Paperback - Books Express. (2015). Retrieved May 30, 2019, from https://www.abebooks.com/Carlo-Scarpa-Complete-Works-ElectaRizzoli/22539189902/bd
8.Carroll, D., & C. Starkey, H. (2013). Effect on sea-water on clay mineral.
9.Carson, R., & Darling, L. (1962). Silent spring. Boston; Cambridge, Mass.: Houghton Mifflin ; Riverside Press.
10.Conservation of Historic Buildings. Cultrone, G., Sebastián, E., & Huertas, M. O. (2007). Durability of masonry systems: A laboratory study. Construction and Building Materials, 21(1), 40-51. doi:10.1016/j.conbuildmat.2005.07.008
11.DUNIA V. SALAZAR, B. A. (1997). THE FUNCTION OF FORM: MEANING IN THE WORK OF CARLO SCARPA. (Master). Texas Tech University,
12.Eestimaaehitus NGO. (2017). Lime stucco and tadelakt workshop. Retrieved from https://www.youtube.com/watch?v=MJAgpH8Ntow
13.Frank, T., Zimmermann, I., & Horn, R. (2019). The need for lime in dependence on clay content in arable crop production in Germany. Soil and Tillage Research, 191, 11-17. doi:10.1016/j.still.2019.03.013
14.FrankS.ZemanandKlausS.Lackner. (2004). CAPTURING CARBON DIOXIDE DIRECTLY FROM THE ATMOSPHERE. World Resource Review, 16(DepartmentofEarthandEnvironmentaElngineering,ColumbiaUniversity).
15.G.P.Karunaratne, S.H.Chew, A. N. S., & S.L.Lee. Consolidation behaviour of bentonite-kaolinite mix. Department of Civil Engineering, National University of Singapore, Singapore.
16.Henriques, F. (2019). The concept of acceptable technology in architectural conservation.
17.Hoegh-Guldberg, O. (1999). Climate Change, coral bleaching and the future of the world’s coral reefs. (University of Sydney).
18.Japanese Arts. (2010). The secret behind every Urushi lacquerware - Nori Urushi (のり漆 - 糊漆). Retrieved from https://www.youtube.com/watch?v=o3lROzaulUo
19.Johnson, J. S. (1979). Eileen Gray, designer. 77.
20.Jones, L. (2008). Environmentally Responsible Design: Green and Sustainable Design for Interior Designers. Hoboken, N.J: Wiley.
21.Karunaratne, G. P., Chew, S. H., Lee, S. L., & Sinha, A. N. (2001). Bentonite:Kaolinite Clay Liner. Geosynthetics International, 8(2), 113-133. doi:10.1680/gein.8.0189
22.Kruger, T. (2017). Can we stop climate change by removing CO2 from the air? Retrieved from https://www.ted.com/talks/tim_kruger_can_we_stop_climate_change_by_removing_co2_from_the_air
23.Lauren B. Sickels-Taves, P. D. P. D. A., D.Arch, RIBA2. (2005). Lime and its place in the 21st century: combining tradition, innovation, and science in building preservation. nternational Building Lime Symposium(Copyright NLA Building Lime Group 2005).
24.Lawrence, R. M. H., & Walker, P. (2008). The impact of the water:lime ratio on the structural characteristics of air lime mortars. Structural Analysis of Historic Construction – D’Ayala & Fodde (eds)(ISBN 978-0-415-46872-5).
25.Limix. (2013). Retrieved December 17, 2018, from MaterialDistrict website: https://materialdistrict.com/material/limix/
26.Luigi Carimati.(n.d.). Retrieved from https://www.idccolourfield.com/pdf/Marmorino.pdf
27.Material Designer | London, UK | Charlotte Kidger. (2019). Retrieved June 20, 2019, from https://www.charlottekidger.com/
28.McGee, H. (2007). On Food and Cooking: The Science and Lore of the Kitchen. Simon and Schuster.
29.Milano Design Film Festival. (2015). Gray Matters Trailer HD. Retrieved from https://www.youtube.com/watch?v=u3th75bnhoA
30.Nguyen, X. H., Honda, T., Wang, Y., & Yamamoto, R. (2010). Eco-materials. Module-H, University of Tokyo.
31.Oxman, N. (2015). Design at the intersection of technology and biology. Retrieved from https://www.ted.com/talks/neri_oxman_design_at_the_intersection_of_technology_and_biology
32.Reviews, C. T. I. (2017). Environmental Chemistry. Cram101 Textbook Reviews.
33.Roman Concrete Research by David Moore. (2004). Retrieved October 13, 2018, from http://www.romanconcrete.com/
34.Sahin Burat, E. (2012). Let the stone appear as stone, wood as wood: Frank lloyd wright's theory of materials (Vol. 29).
35.Saving Venice, 2009 - Christian Kerrigan. (2009). Retrieved June 20, 2019, from https://200yearcontinuum.com/Saving-Venice-2009
36.Schumacher, G. E. (1968). Bulk Compounding Technology. American Journal of Health-System Pharmacy, 25(11), 661-662. doi:10.1093/ajhp/25.11.661
37.Supermama. (2011). Retrieved December 26, 2018, from https://www.supermama.sg/
38.Tosun, N., ÇOĞUn, C., & Tosun, G. (2004). A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method (Vol. 152).
39.Tzyy-Shuh Chang, A. C. W. a. J. L., & Jacox, E. H. (1994). Conceptual Robustness in Simultaneous Engineering: An Extension of Taguchi's Parameter Design. Research in Engineering Design. University of Bath, UK).
40.Walker, R. M. H. L. P. (2008). . Structural Analysis of Historic Construction – D’Ayala & Fodde (eds)(BRE Centre for Innovative Construction Materials, Department of Architecture and Civil Engineering,
41.Walker, V. M. P. (2003). A Review of Rammed Earth Construction. DTi Partners in Innovation Project‘Developing Rammed Earth for UK Housing’.
42.Witze, A. (2017). Seawater is the secret to long-lasting Roman concrete. Nature News. https://doi.org/10.1038/nature.2017.22231
43.Wu, J-H. (2011). 傳統灰漿可逆性之初步研究. 文化資產保存學刊.
44.Xu, W., Wen, X., Wei, J., Xu, P., Zhang, B., Yu, Q., & Ma, H. (2018). Feasibility of kaolin tailing sand to be as an environmentally friendly alternative to river sand in construction applications. Journal of Cleaner Production, 205, 1114-1126. doi:10.1016/j.jclepro.2018.09.119
45.Yang, W. H., & Tarng, Y. S. (1997). Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology, 84.
46.Yenchen & Yawen. (2017). Retrieved June 20, 2019, from Yenchen & Yawen website: https://yenchenyawen.com/
47.马永俊, & 胡希军. (2006). 城镇群的共生发展研究-以浙中金华城镇群为例. [Co-Existence and Development of City-Cluster-A Case Study of the Jinhua City-Cluster]. 26(2), 237-240.
48.王惠君. (2008). 國定古蹟監察院舊大樓北翼防火隔間改善工程施工紀錄報告書. 秀威資訊科技股份有限公司.
49.王敬忠. (2007). 三合土配比與抗壓強度關係之研究. (碩士). 國立嘉義大學, 嘉義市. Retrieved from https://hdl.handle.net/11296/pj3q5q
50.王新衡. (2003). 臺灣傳統磚砌建築灰縫材料特性之研究. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/3btvf7
51.王龍盛. (2003). 清治時期台灣砌磚用糖灰漿之做法與基本性質研究. (碩士). 國立臺灣科技大學, 台北市. Retrieved from https://hdl.handle.net/11296/b8j2gd
52.余長融. (2006). 夯實能量對於高嶺土工程性質的影響. (碩士). 義守大學, 高雄市. Retrieved from https://hdl.handle.net/11296/r8348w
53.吳健榮. (2006). 台灣傳統建築灰泥作技術衍化之研究. (碩士). 中國科技大學
54.吴任平, & 陈燕青. (2012). China Patent No. CN102417329A. Retrieved from https://patents.google.com/patent/CN102417329A/zh
55.宋應星. (2004).天工開物. 五南圖書出版股份有限公司.
56.李玉生, A. (2008). 傳統灰漿可逆性補強工法之研究 (第一版 ed.): 臺北市 : 內政部建築研究所, 民97.12©2008.臺北縣新店市 : 內政部建研所, 2008.
57.李泓銘. (2004). 傳統灰漿材料之特性與配比最佳化之探討. (碩士). 國立成功大學, 台南市.
58.杜仙洲. (1984). 中国古建筑修缮技术.
59.周志明. (2002). 臺灣傳統砌體建築「灰縫」之基礎研究. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/7femvp
60.松尾芭蕉散文, 松尾芭蕉, 陈德文【摘要 书评 试读】图书. (2008). Retrieved December 22, 2018, from https://www.amazon.cn/dp/B001JZ9XQM
61.林廷松, 唐曉武, & 應小豐. (2009). 經過桐油、糯米汁改性粘土的土工特性建筑技術. (07).
62.林羿靜. (2005). 建築評論的理論架構研究. (碩士). 國立雲林科技大學, 雲林縣. Retrieved from https://hdl.handle.net/11296/b5u3pe
63.河北达利通矿产制品厂. (n.d.). Retrieved June 27, 2019, from http://dalitong.jiancai.com/
64.南星海菜粉. (n.d.). Retrieved June 27, 2019, from 南星顏料廠股份有限公司 website: https://www.nscolor.com.tw/portfolio-item/%e6%b5%b7%e8%8f%9c%e7%b2%89/
65.柳萬霞、徐恆文、黃欽銘、陳威丞、歐陽湘. (2012). 燃燒後捕獲二氧化碳技術-鈣迴路捕獲 CO2 技術國際現況與國內發展介紹. 工業污染防治, 121.
66.秦赟. (2015). 环保:还地球新的生机. 南文博雅.
67.高永隆. (2009). 礦物顏料與現代重彩. 2009 兩岸重彩畫學術研討會.
68.國定古蹟臺南孔廟明倫堂壁畫修復計畫. (2009). Retrieved from http://tmach-culture.tainan.gov.tw/warehouse/%7BC8B6F6E4-7D8B-4ECD-A6B1-1AEEE36AF639%7D/%E7%B6%B2%E7%AB%99%E7%94%A8(5).pdf
69.張坤, 方世強, & 張秉堅. (2015). 中國傳統蛋清灰漿的應用歷史和科學性 中國科學:技術科學. (06).
70.張宗漢. (2012). 利用不同黏土-幾丁聚醣吸附劑去除水中二價銅離子之研究. (碩士). 嘉南藥理科技大學, 台南市.
71.張簡介齊. (2009). 傳統建築灰泥壁畫受潮檢測與防治方法之研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/3m9qnu
72.莊敏信. (2003). 傳統灰作基本操作與應用之研究. (碩士). 中原大學, 桃園縣.
73.陳定萱. (2009). 傳統灰漿與近現代灰漿之配比分析法研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/82zu9q
74.陳秉權. (2010). 添加偏高嶺土對水泥質材料白華形成影響之研究. (博士). 國立臺灣海洋大學, 基隆市.
75.陳俊良. (2004). 古蹟灰漿材料之配比與強度關係之研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/4v54by
76.陳奕岑. (2008). 以改質氧化鈣捕獲二氧化碳氣體之循環再生能力研究. (碩士). 國立交通大學, 新竹市. Retrieved from https://hdl.handle.net/11296/4bx24z
77.陳彥奇. (2006). 含海水鹽性改良砂土之力學特性. (碩士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/78cwr4
78.陳倉生. (2004). 應用田口方法於快速原型系統之研究. (碩士). 明新科技大學, 新竹縣. Retrieved from https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=yhc58A/record?r1=1&h1=0
79.陳啟斌, 林進財, & 張哲維. (2000). 灰關聯應用於田口方法多重品質特性問題. 技術學刊, 15(1), 25-33.
80.陳榮輝, 陸柏佑, 俞仁渭, 周聖迪, & 陳偉徵. (2014). 奈米碳材料之合成與吸附特性研究. 高雄師大學報, 37, 21-40.
81.游晏愷. (2007). 灰漿之配比分析與工程性質研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/z3qurj
82.装饰装修工程常见质量问题防治详解,邹泓荣,邹北龙【摘要 书评 试读】- 京东图书. (2013). Retrieved December 25, 2018, from https://item.jd.com/1029260344.html
83.鈣迴路捕獲. (2014). Retrieved June 13, 2019, from 工研院中文版 website: https://www.itri.org.tw/chi/Content/MSGPic01/contents.aspx?&SiteID=1&MmmID=620624053204740250&CatID=620624053253044774&MSID=620625416341345355
84.馮佳福. (2003). 台灣傳統屋面灰漿基本性質之研究. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/tmjnwh
85.楊富巍. (2011). 無機膠凝材料在不可移動文物保護中的應用.
86.葉世文, A. (2003). 古蹟修復技術 : 灰作材料性質與修復工法之研究 (第一版 ed.): 臺北市 : 內政部建築所, 民92.
87.臺南市古蹟與歷史建築總覽. (2001). (初版 ed.): 臺南市 : 臺灣建築文化出版臺北縣中和市 : 吳氏圖書總經銷, 2001[民90].
88.劉大可. (2015). 中國古建築瓦石營法(第二版). Retrieved October 8, 2018, from 博客來 website: http://www.books.com.tw/products/CN11249921
89.魏国锋, 安徽大学历史系, 魏国锋, 周虎, 方世强, 黄晓娟, . . . 浙江大学文物与博物馆学系, 浙. (2015). 石灰种类对传统糯米灰浆性能的影响. [Effect of Lime Type on Properties of Traditional Sticky Rice-Lime Mortar]. 建築材料學報, 18(5), 873-878.
90.羅揚宗. (2009). 傳統磚砌建築灰縫材料改良之研究. (碩士). 國立成功大學, 台南市.
91.杨华山,车玉君,马小满. (2015). 中国传统糯米 - 石灰砂浆的原材料和结构. 1. doi:10.3969/j.issn.1002-3550.2015.01.033
92.杨富巍, 张., 潘昌初 ,曾余瑶. (2009). <以糯米灰浆为代表的传统灰浆——中国古代的 重大发明之一>. 中国科学E辑: 技术科学(《中国科学》杂志社). doi:10.1360/ze2009-39-1-1
93.纪晓佳, 宋., 庞 苗. (2013). 糯米浆三合土的物理力学性能试验研究. 建筑技术Architecture Technology, 44.
94.赵鹏,李广燕,张云升. (2013). 桐油–石灰传统灰浆的性能与作用机理. 硅酸盐学报, 41. doi:10.7521/j.issn.0454-5648.2013.08.13.
95.龚增培. (2010). 甲基纤维素及羟丙基甲基纤维素的工艺研究. [Process Study on the Methyl Cellulose and Hydroxypropyl Methyl Cellulose]. 塑料工業, 38(8), 10-14+21.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊