|
[1]S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998. [2]V. Tarokh, N. Seshadri, and A. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998. [3]H. El Gamal, “On the robustness of space-time coding,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2417–2428, Oct. 2002. [4]G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, Sep. 1996. [5]L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: benefits and challenges,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014. [6]E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014. [7]S. Wang, Y. Li, M. Zhao, and J. Wang, “Energy efficient and low-complexity uplink transceiver for massive spatial modulation MIMO,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4617–4632, Oct. 2015. [8]C. T. Lin, W.R. Wu, and C. Y. Liu, “Low-complexity ML detectors for generalized spatial modulation systems,” IEEE Trans. Commun., vol. 63, no. 11, pp. 4214–4230, Nov. 2015. [9]Y. Xiao, Z. Yang, L. Dan, P. Yang, L. Yin, and W. Xiang, “Low complexity signal detection for generalized spatial modulation,” IEEE Commun. Lett., vol. 18, no. 3, pp. 403–406, Mar. 2014. [10]C. E. Chen, C. H. Li, and Y. H. Huang, “An improved ordered-block MMSE detector for generalized spatial modulation,” IEEE Commun. Lett., vol. 19, no. 5, pp. 707–710, May 2015. [11]R. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241, July 2008. [12]J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12, no. 8, pp. 545–547, Aug. 2008. [13]A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised spatial modulation,” in Proc. Conf. Rec. 44th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 2010, pp. 1498–1502. [14]M. Di Renzo, H. Haas, and P. M. Grant, “Spatial modulation for multipleantenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49, no. 12, pp. 182–191, Dec. 2011. [15]A. Stavridis, S. Sinanovic, M. Di Renzo, and H. Haas, “Energy evaluation of spatial modulation at a multi-antenna base station,” in Proc. IEEE VTC-fall, Sep. 2013, pp. 1–5. [16]N. Serafimovski , A. Younis, R. Mesleh, P. Chambers, M. Di Renzo, C. X. Wang “Practical implementation of spatial modulation,” IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4511–4523, Nov. 2013. [17]A. Younis, S. Sinanovic, M. Di Renzo, R. Mesleh, and H. Haas, “Generalised sphere decoding for spatial modulation,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2805–2815, July 2013. [18]M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014. [19]P. Yang, M. Di Renzo, Y. Xiao, S. Li, and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surv. Tuts., vol. 17, no. 1, pp. 6–26, May 2014. [20]W. Liu, N. Wang, M. Jin, and H. Xu, “Denoising detection for the generalized spatial modulation system using sparse property,” IEEE Commun. Lett., vol. 18, no. 1, pp. 22–25, Jan. 2014. [21]L. Xiao, L. Dan, Y. Zhang, Y. Xiao, P. Yang, and S. Li, “A low-complexity detection scheme for generalized spatial modulation sided single carrier systems, ” IEEE Commun. Lett., vol. 19, no. 6, pp. 1069–1072, June 2015. [22]L. Xiao, P. Yang, Y. Zhao, Y. Xiao, J. Liu, and S. Li, “Low-complexity tree search-based detection algorithms for generalized spatial modulation aided single carrier systems,” in Proc. IEEE ICC, Kuala Lumpur, Malaysia, May 2016, pp. 1–6. [23]S. Fan, Y. Xiao, L. Xiao, P. Yang, R. Shi, and K. Deng, “Improved layered message passing algorithms for large-scale generalized spatial modulation systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 66–69, Feb. 2018. [24]J. A. Cal-Braz and R. Sampaio-Neto, “Low-complexity sphere decoding detector for generalized spatial modulation systems,” IEEE Commun. Lett., vol. 18, no. 6, pp. 949–952, June 2014. [25]B. Zheng, M. Wen, F. Chen, N. Huang, F. Ji, and H. Yu, “The K-Best sphere decoding for soft detection of generalized spatial modulation,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4803–4816, Nov. 2017. [26]C. Yang, P. Cheng, Z. Chen, J. A. Zhang, Y. Xiao, and L. Gui, “Near-ML low-complexity detection for generalized spatial modulation”, IEEE Commun. Lett., vol. 20, no. 3, pp. 618–621, Mar. 2016. [27]L. Xiao, P. Yang, Y. Xiao, S. Fan, M. D. Renzo, W. Xiang, and S. Li, “Efficient compressed sensing detectors for generalized spatial modulation systems,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1284–1298, Feb. 2018. [28]L. Xiao, Y. Xiao, C. Xu, X. Lei, P. Yang, S. Li, and L. Hanzo, “Compressed-sensing assisted spatial multiplexing aided spatial modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 794–807, Feb. 2018. [29]X. Q. Jiang, M. Wen, J. Li, and W. Duan, “Distributed generalized spatial modulation based on chinese remainder theorem,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1501–1504, July 2017. [30]H. Y. Yoon and T. H. Kim, "Low-complexity symbol detection for generalized spatial modulation MIMO systems," in Proc. IEEE VTC-fall, Sep. 2017, pp. 1–5. [31]C. P. Li, S. H. Wang, and K. C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM Systems,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1712–1718, June 2012.
[32]S. H. Wang and C. P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Processing Letters, vol. 16, no. 11, pp. 941-944, Nov. 2009. [33]W. J. Huang, W. W. Hu, C. P. Li, and J. C. Chen, “Novel metric-based PAPR reduction schemes for MC-CDMA systems,” IEEE Trans. Veh. Technol., vol. 64, no. 9, pp. 3982–3989, Sep. 2015. [34]S. H. Wang, K. C. Lee, and C. P. Li, “A low-complexity architecture for PAPR reduction in OFDM systems with near-optimal performance,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 169–179, Jan. 2016. [35]K. C. Lee, C. P. Li, T. Y. Wang, and H. J. Li, “Performance analysis of dual-hop amplify-and-forward systems with multiple antennas and co-channel interference,” IEEE Trans. Wireless Commun., vol. 13, no. 6, pp. 3070–3087, June 2014. [36]S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, ‘‘A novel low-complexity precoded OFDM system with reduced PAPR,’’ IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1366–1376, Mar. 2015. [37]W. C. Huang, C. P. Li, and H. J. Li, “An investigation into the noise variance and the SNR estimators in imperfectly-synchronized OFDM systems,” IEEE Trans. Commun., vol. 9, no. 3, pp. 1159–1167, Mar. 2010. [38]W. C. Huang, Y. S. Yang, and C. P. Li, “A new pilot architecture for sub-band uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 461–470, Sep. 2013. [39]M. L. Wang, C. P. Li, and W. J. Huang, “Semiblind channel estimation and precoding scheme in two-way multirelay networks,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2576–2587, May. 2017. [40]K. Chan, Y. Chen, C. Wu and C. Li, "Achieving full diversity on a single-carrier distributed QOSFBC transmission scheme utilizing PAPR reduction," IEEE Trans. Commun., vol. 66, no. 4, pp. 1636–1648, Apr. 2018
|