|
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In 2nd Int. Symp. on Information Theory (Edited by B. N. Petrov and F. Csaki), 267--281. Akademiai Kiado, Budapest.
Anderson, T.W. (2003) An Introduction to Multivariate Statistical Analysis, third ed. Wiely, New York.
Azzalini, A. (1985) A class of distributions which includes the normal ones. Scandinacian Journal of Statistics. 12, 171--178.
Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scand. J. Statist. 32, 159--188.
Azzalini, A. and Capitanio, A. (1999) Statistical applications of the multivariate skew normal distribution. J. Roy. Statist. Soc. Ser. B 61, 579--602.
Azzalini, A. and Capitaino, A. (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. Ser. B 65, 367--389.
Azzalini, A. and Dalla Valle, A. (1996) The multivariate skew-normal distribution. Biometrika 83, 715--726.
Azzalini, A. and Genton, M.G. (2008) Robust likelihood methods based on the skew-t and related distributions. Int. Statist. Rev., 76, 106--129.
Baek, J. and McLachlan, G.J. (2011) Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Bioinformatics 27, 1269--1276.
Baek, J., McLachlan, G.J., and Flack, L. (2010) Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1298--1309.
Basilevsky, A. (2008) Statistical Factor Analysis and Related Methods: Theory and Applications. John Wiley & Sons, Inc.
Branco, M.D. and Dey, D.K. (2001) A general class of multivariate skew-elliptical distributions. Journal of Multivariate Analysis., 79, 99--113.
Cook, R.D. and Weisberg, S. (1994) An Introduction to Regression Graphics. Wiley, New York.
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 39, 1--38.
Efron, B. and Hinkley, D.V. (1978) Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher Information (with discussion). Biometrika 65 457--487.
Efron, B. and Tibshirani, R. (1986) Bootstrap method for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54--77.
Fokoue, E. and Titterington, D.M., (2003) Mixtures of factor analyzers. Bayesian estimation and inference by stochastic simulation. Mach. Learning 50, 73--94.
Ghahramani, Z. and Hinton, G. (1997) The EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-1, University of Toronto.
Gupta, A.K. and Huang, W.J. (2002) Quadratic forms in skew normal variates. J. Math. Anal. Appl. 273, 558--564.
Kotz, S. and Nadarajah, S. (2004) Multivariate t distributions and their applications. Cambridge University Press.
Healy, M.J.R. (1968) Multivariate normal plotting. App. Statist. 17, 157--161.
Ho, H.J., Lin, T.I., Chang, H.H., Haase, H.B., Huang, S. and Pyne, S. (2012) Parametric modeling of cellular state transitions as measured with flow cytometry different tissues. BMC Bioinformatics 13 (Suppl 5):S5
Jamshidian, M. (1997) An EM algorithm for ML factor analysis with missing data. In Berkane, M. (Ed.) Latent Variable Modeling and Applications to Causality, (pp. 247-258). Springer Verlag, New York.
Jones, M.C. and Faddy, M.J. (2003) A skew extension of the t-distribution, with applications. J. Roy. Statist. Soc. Ser. B, 65, 159--174.
Lachos, V.H., Ghosh, P., and Arellano-Valle, R.B. (2010) Likelihood based inference for skew normal independent linear mixed models. Statistica Sinica. 20, 303--322.
Lange, K.L., Little, R.J.A. and Taylor, J.M.G. (1989) Robust statistical modeling using the t distribution. J. Amer. Statist. Assoc. 84, 881--896.
Lee, S., McLachlan, G. (2013a) Finite mixtures of multivariate skew t-distributions: some recent and new results Statist. Comput. DOI 10.1007/s11222-012-9362-4.
Lee, S.X. and McLachlan, G.J. (2013b). On mixtures of skew normal and skew t-distributions. Adv. Data Anal. Classif. Doi 10.1007/s11634-013-0132-8.
Lin, T.I., Ho, H.J. and Chen, C.L. (2009) Analysis of multivariate skew normal models with incomplete data. J. Multivariate Anal. 100, 2337--2351.
Lin, T.I., Lee, J.C. and Ho, H.J. (2006) On fast supervised learning for normal mixture models with missing information. Pattern Recognit. 39, 1177--1187.
Lin, T.I. (2010) Robust mixture modeling using multivariate skew t distributions. Stat. Comput. 20, 343--356.
Lin, T.I. and Lin, T.C. (2011) Robust statistical modelling using the multivariate skew t distribution with complete and incomplete data. Stat. Model. 11, 253--277.
Lin, T.I., Lee, J.C. and Ho, H.j. (2006) On fast supervised learning for normal mixture models with missing information, Pattern Recog. 39, 1177--1187.
Lin, T.I., Lee, J.C. and Hsieh, W.J. (2007) Robust mixture modeling using the skew t distribution. Stat. Comput. 17, 81--92.
Lopes, H. F. and West M. (2004) Bayesian model assessment in factor analysis. Stat. Sin. 14, 41--67.
Louis, T.A. (1982) Finding the observed information when using the EM algorithm. J. R. Stat. Soc. Ser. B 44, 226--232.
McLachlan, G.J., Bean, R.W. and Jones, L.B.T. (2007) Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Comput. Stat. Data Anal. 51, 5327--5338.
McLachlan, G.J. and Peel, D. (2000) Mixture of factor analyzers. In Proceedings of the Seventeenth International Conference on Machine Learning, P. Langley (Ed.). San Francisco:Morgan Kaufmann, 599--606.
McLachlan, G.J.,Peel, D. and bean, R.W. (2003) Modelling high-dimensional data by mixtures of factor analyzers. Computational Statistics and Data Analysis. 41, 379--388.
Meng, X.L. and Rubin, D.B. (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267--278.
Pyne S., Hu, X., Wang, K., Rossin, E., Lin, T.I., Maier, L.M., Baecher-Allan, C., McLachlan, G.J., Tamayo, P., Hafler, D.A., De Jager, P.L. and Mesirov, J.P. (2009) Automated high-dimensional flow cytometric data analysis. Proc. Natl. Acad. Sci. USA, 106, 8519--8524.
Rossin, E., Lin, T.I., Ho, H.J., Mentzer, S.J. and Pyne, S. (2011) A framework for analytical characterization of monoclonal antibodies based on reactivity profiles in different tissues. Bioinformatics 27, 2746--2753.
Sahu, S.K., Dey, D.K. and Branco, M.D. (2003) A new class of multivariate skew distributions with application to Bayesian regression models. Can. J. Statist. 31, 129--150.
Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist. 6, 461--464.
Spearman, C. (1904) General intelligence, objectively determined and measured. Am. J. Psy. 15, 201--293.
Titterington, D.M., Smith, A.F.M. and Markov, U.E. (1985) Statistical analysis of finite mixture distributions. Wiely, New York.
Wang, K., McLachlan, G.J., Ng, S.K. and Peel, D. (2009) EMMIX-skew (R package version 1.0-12): EM Algorithm for Mixture of Multivariate Skew Normal/t Distributions.
Wang, W.L. and Lin, T.I. (2013) An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers. Comput. Statist. 28, 751--769.
Zacks, S. (1971) The Theory of Statistical Inference. John Wiley, New York.
Zhang, J., Li, J. and Liu, C. (2013) Robust factor analysis using the multivariate t-distribution. unpublished manuscript.
|