跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姜葉飛
研究生(外文):JIANG, YEFEI
論文名稱:Copula網路模型之建構與在文獻計量之應用
論文名稱(外文):The Construction of Copula Based Network Model and Its Application in Bibliometrics
指導教授:李天行李天行引用關係謝邦昌謝邦昌引用關係
指導教授(外文):LEE, TIAN-SHYUGSHIA, BEN-CHANG
口試委員:林義貴李天行李建裕陳銘芷呂奇傑謝邦昌
口試委員(外文):LIN, YI-KUEILEE, TIAN-SHYUGLEE, BRUCE C.Y.CHEN, MINGCHIHLU, CHI-JIESHIA, BEN-CHANG
口試日期:2018-07-18
學位類別:博士
校院名稱:輔仁大學
系所名稱:商學研究所博士班
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:93
中文關鍵詞:網絡分析相關係數Copula文獻計量分析
外文關鍵詞:Network AnalysisCorrelation CoefficientCopulaBibliometrics Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
日益增加的大規模資料對各種類型資料的處理與分析提出了新的挑戰。管理科學依賴與資料及其推斷結果,可如今一些傳統統計方法已經受到質疑,其歸納和演繹的結果可能難以正確指導相關的管理與運營。
在實際資料的應用中,變數間的關係往往沒有傳統統計方法裡假設的那樣簡單和美好;單一或者局部性個體的分析已經不能滿足人們的需要。基於網絡結構的分析方法可以在傳統分析中考慮這些關係或者提供一種系統性的視野來進行系統的審視。資料量增大之後不免會遇到稀疏性的問題。在相關性的計算上,傳統的計算方法似乎沒有能夠很好地考慮到資料的稀疏性;同時,相關性是否僅僅只是簡單的的線性關係還需要更多的討論。
本文試圖從基於網絡結構的分析方法和Copula函數相關性的度量上去改進傳統相關係數在非線性及零膨脹情況下遇到的問題,從系統的角度來提煉資料中重要的影響因素和類別。模擬分析結果顯示,基於Copula的相關性度量可以更好的描述變數間的真實關係,并解決傳統相關性帶來的變異數與偏差。
利用PubMed上提供的公開資料來對使用健保資料庫的研究進行文獻計量分析,利用基於Copula的網路分析方法,找出作者與機構之間的協作網路以及基於醫學主題詞(MeSH)的研究熱點與領域發現與變化的追蹤。既可以對相關管理機構提供有指導價值的資訊同時推動科學生產。

The daily broadening large scale data mounts many new challenges to the processing and analysis of various types of data. Management science is subjected to related data and its inferred consequences. However, the effectiveness of some traditional statistical methods are open to doubt, and the outcomes of induction and deduction may be hard to accurately pilot the related management and operations.
In practical operation, we usually find the relation between variables is more changeable and unreliable than that is assumed in traditional statistical methods; the analysis depends on individual/local data no longer meet people's demands. Analysis based-on network may offer the possibilities for exploring relations between variables and provide systematic perspectives on problems. As the data volume increases, the problem of sparseness will arise. On the measurement of correlation, the traditional methods do not consider the sparseness of the data adequately; simultaneously, whether the correlation is merely a simple linear relationship is still under discussion.
This thesis attempts to improve the problems encountered by the traditional correlation coefficients in the case of non-linear and inflated from the analysis of the correlation between the Copula bases network analysis method. And this method can systematically obtain important factors and categories in the data. The simulation analysis results show that the Copula based correlation measurement can better describe the true relationship between variables with higher robustness and solve the variance and bias under traditional correlation measurement.
Empirical study used the publications of NHIRD which were provided publicly by PubMed. We construct the Copula based network model to find the collaborative network between authors and organizations, and discovered the research topic detection and temporal trend based on Medical Subject Headings (MeSH) terms, so as to provide practical value to related administrative department and attempt to bring the theoretical frame of management science to completion.
Chapter 1 Introduction 1
1.1 Background ............................... 1
1.2 Motivation................................ 2
1.3 Research Purpose and Objectives ................... 6
1.4 Organization of the Chapters...................... 7

Chapter 2 Literature Review 9
2.1 Network-based Analysis of Covariates ................ 9
2.1.1 The Basic Analysis Schemes ................. 9
2.1.2 Constructing Networks .................... 11
2.1.3 Marginal Analysis ....................... 13
2.1.4 Joint Analysis.......................... 15
2.2 Network-based Analysis of Samples.................. 19
2.2.1 Human Disease Network(HDN) ............... 19
2.2.2 Social Network Analysis(SNA)................ 29
2.3 Copulas.................................. 30

Chapter 3 Research Methodology 33
3.1 Correlation Measurement........................ 34
3.1.1 Measures of Dependence ................... 34
3.1.2 Copulas ............................. 35
3.2 Co-occurrence Network Analysis ................... 43
3.3 StudyDesign............................... 47

Chapter 4 Simulation and Comparison of Copula Based Dependence 49
4.1 Modeling with Marginal Distribution ................. 49
4.2 Copula Dependence versus Correlation ................ 50
4.3 Simulation Studies............................ 53
4.3.1 Study I: General Data Relationship without Zero . . . . . . 53
4.3.2 Study II: Zero-Inflated Data Relationship . . . . . . . . . . 56
4.3.3 Summary ............................ 57

Chapter 5 Copula Based Network Model in Bibliometrics Study 59
5.1 Introduction ............................... 59
5.2 Research Methods and Strategy .................... 60
5.2.1 Data............................... 60
5.2.2 General Method ........................ 61
5.2.3 Collaboration Authorship Network . . . . . . . . . . . . . . 62
5.2.4 Collaboration Organization Network . . . . . . . . . . . . . 63
5.2.5 Research Focus & Trend Network via MeSH . . . . . . . . 63
5.3 Co-Authorship Network ........................ 64
5.4 Collaboration Network of Organizations . . . . . . . . . . . . . . . 64
5.5 Research Focus and Trend Network .................. 66
5.5.1 Overall Research Focus .................... 69
5.5.2 Research Temporal Trends................... 73
5.6 Remarks ................................. 77

Chapter 6 Summary and Future Work 81

References 83
Acedo, F. J., Barroso, C., Casanueva, C., & Galán, J. L. (2006). Co-authorship in management and organizational studies: An empirical and network analysis. Journal of Management Studies, 43, 957–983.
Aggarwal, C. C., & Wang, H. (2011). Text mining in social networks. In Social Network Data Analytics (pp. 353–378). Springer.
Albert, R. (2005). Scale-free networks in cell biology. Journal of Cell Science, 118, 4947–4957. Allen, J. D., Xie, Y., Chen, M., Girard, L., & Xiao, G. (2012). Comparing statistical methods for
constructing large scale gene networks. PloS one, 7, e29348.
Barabási, A.-L. (2003). Linked. New York: Plume.
Barabási, A.-L. (2007). Network medicine–from obesity to the ”diseasome”. New England Journal of Medicine, 357, 404–407.
Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509– 512.
Barabási, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12, 56.
Barabasi, A.-L., & Oltvai, Z. N. (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5, 101.
Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R., & Califano, A. (2005). Reverse engineering of regulatory networks in human b cells. Nature Genetics, 37, 382.
Benson, A. R., Gleich, D. F., & Leskovec, J. (2016). Higher-order organization of complex networks. Science, 353, 163–166.
Bickel, D. R. (2004). Probabilities of spurious connections in gene networks: application to expression time series. Bioinformatics, 21, 1121–1128.
Bien, J., Taylor, J., & Tibshirani, R. (2013). A lasso for hierarchical interactions. Annals of Statistics, 41, 1111.
Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892–895.
Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics, 37, 373– 384.
Brida, J. G., & Risso, W. A. (2007). Dynamics and structure of the main italian companies. International Journal of Modern Physics C, 18, 1783–1793.
Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, (pp. 477–505).
Bühlmann, P., & Yu, B. (2006). Sparse boosting. Journal of Machine Learning Research, 7, 1001– 1024.
Calvano, S. E., Xiao, W., Richards, D. R., Felciano, R. M., Baker, H. V., Cho, R. J., Chen, R. O., Brownstein, B. H., Cobb, J. P., Tschoeke, S. K. et al. (2005). A network-based analysis of systemic inflammation in humans. Nature, 437, 1032.
Cameron, A. C., Li, T., Trivedi, P. K., & Zimmer, D. M. (2004). Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts. The Econometrics Journal, 7, 566–584.
Carlson, M. R., Zhang, B., Fang, Z., Mischel, P. S., Horvath, S., & Nelson, S. F. (2006). Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics, 7, 40.
Carrington, P. J. (2011). Crime and social network analysis. In The SAGE handbook of social network analysis (pp. 236–255). SAGE Publications Inc., London.
Carter, S. L., Brechbühler, C. M., Griffin, M., & Bond, A. T. (2004). Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics, 20, 2242–2250.
Chambers, J. M. (1998). Programming with data: A guide to the S language. Springer Science & Business Media.
Chang, C.-C., Liao, C.-C., & Chen, T.-L. (2016). Perioperative medicine and taiwan national health insurance research database. Acta Anaesthesiologica Taiwanica, 54, 93–96.
Chen, X., & Fan, Y. (2006). Estimation of copula-based semiparametric time series models. Journal of Econometrics, 130, 307–335.
Chen, X., Wang, L., Smith, J. D., & Zhang, B. (2008). Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes. Bioinformatics, 24, 2474–2481.
Chen, Y.-C., Wu, J.-C., Haschler, I., Majeed, A., Chen, T.-J., & Wetter, T. (2011a). Academic impact of a public electronic health database: bibliometric analysis of studies using the general practice research database. PloS one, 6, e21404.
Chen, Y.-C., Yeh, H.-Y., Wu, J.-C., Haschler, I., Chen, T.-J., & Wetter, T. (2011b). Taiwan’s national health insurance research database: administrative health care database as study object in bibliometrics. Scientometrics, 86, 365–380.
Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons. Childs, B., & Valle, D. (2000). Genetics, biology and disease. Annual Review of Genomics and Human
Genetics, 1, 1–19.
Chin, L., Andersen, J. N., & Futreal, P. A. (2011). Cancer genomics: from discovery science to
personalized medicine. Nature Medicine, 17, 297.
Corradi, V., & Swanson, N. R. (2006). Predictive density evaluation. Handbook of economic
forecasting, 1, 197–284.
Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. O. (2015). State of the art personality research: A tutorial on network analysis of personality data in r. Journal of Research in Personality, 54, 13–29.
Cowley, M. J., Pinese, M., Kassahn, K. S., Waddell, N., Pearson, J. V., Grimmond, S. M., Biankin, A. V., Hautaniemi, S., & Wu, J. (2011). Pina v2. 0: mining interactome modules. Nucleic Acids Research, 40, D862–D865.
Daggy, J. K. (2009). Joint modeling of highly skewed data with excess zeros using copulas. Ph.D. thesis Purdue University.
Daggy, J. K., Thomas, J., Craig, B. A., Manning, Duan, Baser, Welsh, Manning, Basu, Zhou et al. (2011). Modeling correlated healthcare costs. Expert Review of Pharmacoeconomics & Outcomes Research, 11, 101–111.
Davis, D., Yaveroğlu, Ö. N., Malod-Dognin, N., Stojmirovic, A., & Pržulj, N. (2015). Topology- function conservation in protein–protein interaction networks. Bioinformatics, 31, 1632–1639.
Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45, 265–282.
Diebold, F. X., Hahn, J., & Tay, A. S. (1999). Multivariate density forecast evaluation and calibration in financial risk management: high-frequency returns on foreign exchange. Review of Economics and Statistics, 81, 661–673.
Djebbari, A., Karamycheva, S., Howe, E., & Quackenbush, J. (2005). Mesher: identifying biological concepts in microarray assays based on pubmed references and mesh terms. Bioinformatics, 21, 3324–3326.
Dong, J., & Horvath, S. (2007). Understanding network concepts in modules. BMC Systems Biology, 1, 24.
Duan, N., Manning, W. G., Morris, C. N., & Newhouse, J. P. (1983). A comparison of alternative models for the demand for medical care. Journal of Business & Economic Statistics, 1, 115–126.
Elidan, G. (2012). Copula network classifiers (cncs). In Artificial Intelligence and Statistics (pp. 346–354).
Embi, P. J., Jain, A., Clark, J., & Harris, C. M. (2005). Development of an electronic health record-based clinical trial alert system to enhance recruitment at the point of care. In AMIA Annual Symposium Proceedings (p. 231). American Medical Informatics Association volume 2005.
Embrechts, P., Höing, A., & Juri, A. (2003). Using copulae to bound the value-at-risk for functions of dependent risks. Finance and Stochastics, 7, 145–167.
Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk Management: Value at Risk and Beyond, 1, 176–223.
Escarela, G., & Carriere, J. F. (2003). Fitting competing risks with an assumed copula. Statistical Methods in Medical Research, 12, 333–349.
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96, 1348–1360.
Fang, K., Kotz, S., & Ng, K. (1990). Symmetric multivariate and related distributions.
Fantazzini, D. (2003). Copula’s conditional dependence measures for portfolio management and Value
at Risk. Technical Report Konstanz: University of Konstanz.
Feldman, I., Rzhetsky, A., & Vitkup, D. (2008). Network properties of genes harboring inherited
disease mutations. Proceedings of the National Academy of Sciences, 105, 4323–4328.
Fermanian, J.-D. et al. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate Analysis, 95, 119–152.
Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements. The journal of Finance, 57, 2223–2261.
Frees, E. W., Carriere, J., & Valdez, E. (1996). Annuity valuation with dependent mortality. Journal of Risk and Insurance, (pp. 229–261).
Frees, E. W., & Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial Journal, 2, 1–25.
Frees, E. W., & Wang, P. (2005). Credibility using copulas. North American Actuarial Journal, 9, 31–48.
Friedman, J., & Popescu, B. E. (2003). Gradient directed regularization for linear regression and classification. Technical Report Citeseer.
Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, (pp. 1–67). Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303,
799–805.
Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. Journal of Computational and
Graphical Statistics, 7, 397–416.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of npcompleteness (series of books in the mathematical sciences), ed. Computers and Intractability, (p. 340).
Genest, C., & MacKay, J. (1986). The joy of copulas: Bivariate distributions with uniform marginals. The American Statistician, 40, 280–283.
Genest, C., & Nešlehová, J. (2007). A primer on copulas for count data. ASTIN Bulletin: The Journal of the IAA, 37, 475–515.
Genest, C., Quessy, J.-F., & Rémillard, B. (2006). Goodness-of-fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics, 33, 337–366.
George, E. I., & McCulloch, R. E. (1997). Approaches for bayesian variable selection. Statistica Sinica, (pp. 339–373).
Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R., Brozell, A., Schadt, E. E., Drake, T. A., Lusis, A. J. et al. (2006). Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genetics, 2, e130.
Glasserman, P., & Young, H. P. (2015). How likely is contagion in financial networks? Journal of Banking & Finance, 50, 383–399.
Gligorijević, V., Malod-Dognin, N., & Pržulj, N. (2016). Integrative methods for analyzing big data in precision medicine. Proteomics, 16, 741–758.
Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabási, A.-L. (2007). The human disease network. Proceedings of the National Academy of Sciences, 104, 8685–8690.
Gregory, X. B. J., & Laurent, J. (2005). Beyond the Gaussian copula: stochastic and local correlation. Technical Report Working Paper, BNP Paribas.
Grunwald, G. K., & Jones, R. H. (2000). Markov models for time series with mixed distribution. Environmetrics: The Official Journal of the International Environmetrics Society, 11, 327–339.
Guare, J. (1990). Six degrees of separation: A play. Vintage.
Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005). Online mendelian inheritance in man (omim), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research, 33, D514–D517.
Hanauer, D. A., Rhodes, D. R., & Chinnaiyan, A. M. (2009). Exploring clinical associations using ‘-omics’based enrichment analyses. PloS One, 4, e5203.
Harpe, S. E. (2009). Using secondary data sources for pharmacoepidemiology and outcomes research. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 29, 138–153.
Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402, C47.
Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., Van De Lagemaat, L. N., Smith, K. A., Ebbert, A., Riley, Z. L. et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391.
Hennessy, S. (2006). Use of health care databases in pharmacoepidemiology. Basic & Clinical Pharmacology & Toxicology, 98, 311–313.
Hidalgo, C. A., Blumm, N., Barabási, A.-L., & Christakis, N. A. (2009). A dynamic network approach for the study of human phenotypes. PLoS Computational Biology, 5, e1000353.
Hoffmann, F. (2009). Review on use of german health insurance medication claims data for epidemiological research. Pharmacoepidemiology and Drug Safety, 18, 349–356.
Horvath, S. (2011). Weighted network analysis: applications in genomics and systems biology. Springer Science & Business Media.
Horvath, S., & Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS computational biology, 4, e1000117.
Horvath, S., Dong, J., & Yip, A. (2005). Using the factorizability decomposition to understand connectivity in modular gene co-expression networks. Technical Report UCLA Technical Report. www. genetics. ucla. edu/labs/horvath/ModuleConformity.
Horvath, S., Zhang, B., Carlson, M., Lu, K., Zhu, S., Felciano, R., Laurance, M., Zhao, W., Qi, S., Chen, Z. et al. (2006). Analysis of oncogenic signaling networks in glioblastoma identifies aspm as a molecular target. Proceedings of the National Academy of Sciences, 103, 17402–17407.
Hsiao, F.-Y., Yang, C.-L., Huang, Y.-T., & Huang, W.-F. (2007). Using taiwan’s national health insurance research databases for pharmacoepidemiology research. Journal of Food and Drug analysis, 15.
Hu, Y.-T., Kiesel, R., & Perraudin, W. (2002). The estimation of transition matrices for sovereign credit ratings. Journal of Banking & Finance, 26, 1383–1406.
Huang, J., Breheny, P., & Ma, S. (2012). A selective review of group selection in high-dimensional models. Statistical science: a review journal of the Institute of Mathematical Statistics, 27.
Huang, J., Ma, S., Li, H., & Zhang, C.-H. (2011a). The sparse laplacian shrinkage estimator for high- dimensional regression. Annals of Statistics, 39, 2021.
Huang, M., Névéol, A., & Lu, Z. (2011b). Recommending mesh terms for annotating biomedical articles. Journal of the American Medical Informatics Association, 18, 660–667.
Hudson, J. (1996). Trends in multi-authored papers in economics. Journal of Economic Perspectives, 10, 153–158.
Huson, L. W. (2007). Performance of some correlation coefficients when applied to zero-clustered data. Journal of Modern Applied Statistical Methods, 6, 17.
Ihmels, J., Bergmann, S., & Barkai, N. (2004). Defining transcription modules using large-scale gene expression data. Bioinformatics, 20, 1993–2003.
Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., & Barkai, N. (2002). Revealing modular organization in the yeast transcriptional network. Nature Genetics, 31, 370.
Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining electronic health records: towards better research applications and clinical care. Nature Reviews Genetics, 13, 395.
Jiang, Y., Ma, S., Shia, B.-C., & Lee, T.-S. (2018). An epidemiological human disease network derived from disease co-occurrence in taiwan. Scientific Reports, 8, 4557.
Jimenez-Sanchez, G., Childs, B., & Valle, D. (2001). Human disease genes. Nature, 409, 853.
Joe, H. (1997). Multivariate models and multivariate dependence concepts. Chapman and Hall/CRC.
Kalaria, R. (2002). Similarities between alzheimer’s disease and vascular dementia. Journal of the Neurological Sciences, 203, 29–34.
Kendall, S. D., Linardic, C. M., Adam, S. J., & Counter, C. M. (2005). A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Research, 65, 9824–9828.
Kim, J., & Hastak, M. (2018). Social network analysis: Characteristics of online social networks after a disaster. International Journal of Information Management, 38, 86–96.
Kim, W., Aronson, A. R., & Wilbur, W. J. (2001). Automatic mesh term assignment and quality assessment. In Proceedings of the AMIA Symposium (p. 319). American Medical Informatics Association.
Kole, E., Koedijk, K., & Verbeek, M. (2007). Selecting copulas for risk management. Journal of Banking & Finance, 31, 2405–2423.
Kostka, D., & Spang, R. (2004). Finding disease specific alterations in the co-expression of genes. Bioinformatics, 20, i194–i199.
Kwoh, C., & Ng, P. (2007). Network analysis approach for biology. Cellular and Molecular Life Sciences, 64, 1739–1751.
Lambert, P., & Vandenhende, F. (2002). A copula-based model for multivariate non-normal longitudinal data: analysis of a dose titration safety study on a new antidepressant. Statistics in Medicine, 21, 3197–3217.
Langfelder, P., & Horvath, S. (2007). Eigengene networks for studying the relationships between co- expression modules. BMC systems biology, 1, 54.
Langfelder, P., & Horvath, S. (2008). Wgcna: an r package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
Langfelder, P., Zhang, B., & Horvath, S. (2007). Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for r. Bioinformatics, 24, 719–720.
Lee, I., Date, S. V., Adai, A. T., & Marcotte, E. M. (2004). A probabilistic functional network of yeast genes. Science, 306, 1555–1558.
Lee, L.-F. (1983). Generalized econometric models with selectivity. Econometrica: Journal of the Econometric Society, (pp. 507–512).
Li, H., Sun, Y., & Zhan, M. (2009). Exploring pathways from gene co-expression to network dynamics. In Computational Systems Biology (pp. 249–267). Springer.
Li, Y., & Agarwal, P. (2009). A pathway-based view of human diseases and disease relationships. PloS One, 4, e4346.
Lim, M., & Hastie, T. (2015). Learning interactions via hierarchical group-lasso regularization. Journal of Computational and Graphical Statistics, 24, 627–654.
Liu, J., Huang, J., & Ma, S. (2013). Incorporating network structure in integrative analysis of cancer prognosis data. Genetic epidemiology, 37, 173–183.
Liu, M., Fan, X., Fang, K., Zhang, Q., & Ma, S. (2017). Integrative sparse principal component analysis of gene expression data. Genetic Epidemiology, 41, 844–865.
Liu, Y. I., Wise, P. H., & Butte, A. J. (2009). The ”etiome”: identification and clustering of human disease etiological factors. In BMC Bioinformatics (p. S14). BioMed Central volume 10.
Loscalzo, J., Kohane, I., & Barabasi, A.-L. (2007). Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Molecular Systems Biology, 3, 124.
Luo, Y., Coskun, V., Liang, A., Yu, J., Cheng, L., Ge, W., Shi, Z., Zhang, K., Li, C., Cui, Y. et al. (2015). Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell, 161, 1175–1186.
Ma, S., & Huang, J. (2008). Penalized feature selection and classification in bioinformatics. Briefings in bioinformatics, 9, 392–403.
Ma, S., Huang, Y., Huang, J., & Fang, K. (2012). Gene network-based cancer prognosis analysis with sparse boosting. Genetics research, 94, 205–221.
Ma, S., & Kosorok, M. R. (2009). Identification of differential gene pathways with principal component analysis. Bioinformatics, 25, 882–889.
Ma, S., Kosorok, M. R., Huang, J., & Dai, Y. (2011). Incorporating higher-order representative features improves prediction in network-based cancer prognosis analysis. BMC medical genomics, 4, 5.
Ma, S., Shi, M., Li, Y., Yi, D., & Shia, B.-C. (2010). Incorporating gene co-expression network in identification of cancer prognosis markers. BMC bioinformatics, 11, 271.
Mani, K. M., Lefebvre, C., Wang, K., Lim, W. K., Basso, K., Dalla-Favera, R., & Califano, A. (2008). A systems biology approach to prediction of oncogenes and molecular perturbation targets in b-cell lymphomas. Molecular Systems Biology, 4, 169.
Manning, W. G., Basu, A., & Mullahy, J. (2005). Generalized modeling approaches to risk adjustment of skewed outcomes data. Journal of Health Economics, 24, 465–488.
Manning, W. G., & Mullahy, J. (2001). Estimating log models: to transform or not to transform? Journal of Health Economics, 20, 461–494.
Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 363, 166–176.
Mao, L., Van Hemert, J. L., Dash, S., & Dickerson, J. A. (2009). Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics, 10, 346.
Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., & Califano, A. (2006). Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. In BMC Bioinformatics (p. S7). BioMed Central volume 7.
Mason, M. J., Fan, G., Plath, K., Zhou, Q., & Horvath, S. (2009). Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics, 10, 327.
McHale, I., & Scarf, P. (2007). Modelling soccer matches using bivariate discrete distributions with general dependence structure. Statistica Neerlandica, 61, 432–445.
Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, M., Loscalzo, J., & Barabási, A.-L. (2015). Uncovering disease-disease relationships through the incomplete interactome. Science, 347, 1257601.
Mitra, K., Carvunis, A.-R., Ramesh, S. K., & Ideker, T. (2013). Integrative approaches for finding modular structure in biological networks. Nature Reviews Genetics, 14, 719.
Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.
Nibbe, R. K., Koyutürk, M., & Chance, M. R. (2010). An integrative-omics approach to identify
functional sub-networks in human colorectal cancer. PLoS Computational Biology, 6, e1000639.
Oldham, M. C., Horvath, S., & Geschwind, D. H. (2006). Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proceedings of the National Academy of Sciences, 103, 17973–17978.
Pakhomov, S. V., Buntrock, J., & Chute, C. G. (2005). Prospective recruitment of patients with congestive heart failure using an ad-hoc binary classifier. Journal of Biomedical Informatics, 38, 145–153.
Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104, 735–746.
Prell, C., Hubacek, K., & Reed, M. (2009). Stakeholder analysis and social network analysis in natural resource management. Society and Natural Resources, 22, 501–518.
Pržulj, N., & Malod-Dognin, N. (2016). Network analytics in the age of big data. Science, 353, 123–124.
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A.-L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297, 1551–1555.
Romano, C. (2002). Extreme Value Theory and coherent risk measures: applications to risk management. Ph.D. thesis Rome: University of Rome LaSapienza.
Roque, F. S., Jensen, P. B., Schmock, H., Dalgaard, M., Andreatta, M., Hansen, T., Søeby, K., Bredkjær, S., Juul, A., Werge, T. et al. (2011). Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Computational Biology, 7, e1002141.
Ruan, J., Dean, A. K., & Zhang, W. (2010). A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Systems Biology, 4, 8.
Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523–529.
Sancetta, A., & Satchell, S. (2004). The bernstein copula and its applications to modeling and approximations of multivariate distributions. Econometric theory, 20, 535–562.
Saris, C. G., Horvath, S., van Vught, P. W., van Es, M. A., Blauw, H. M., Fuller, T. F., Langfelder, P., DeYoung, J., Wokke, J. H., Veldink, J. H. et al. (2009). Weighted gene co-expression network analysis of the peripheral blood from amyotrophic lateral sclerosis patients. BMC genomics, 10, 405.
Schäfer, J., & Strimmer, K. (2004). An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754–764.
Schneeweiss, S., & Avorn, J. (2005). A review of uses of health care utilization databases for epidemiologic research on therapeutics. Journal of Clinical Epidemiology, 58, 323–337.
Scott, J. (1991). Networks of corporate power: A comparative assessment. Annual Review of Sociology, 17, 181–203.
Sedaghat, N., Saegusa, T., Randolph, T., & Shojaie, A. (2014). Comparative study of computational methods for reconstructing genetic networks of cancer-related pathways. Cancer Informatics, 13, CIN–S13781.
Serrat, O. (2017). Social network analysis. In Knowledge Solutions (pp. 39–43). Springer.
Shao, C.-C., Chang, C.-P., Chou, L.-F., Chen, T.-J., & Hwang, S.-J. (2011). The ecology of medical
care in taiwan. Journal of the Chinese Medical Association, 74, 408–412.
Sharan, R., Ulitsky, I., & Shamir, R. (2007). Network-based prediction of protein function. Molecular
Systems Biology, 3, 88.
Shi, X., Liu, J., Huang, J., Zhou, Y., Shia, B.-C., & Ma, S. (2014a). Integrative analysis of high-
throughput cancer studies with contrasted penalization. Genetic epidemiology, 38, 144–151.
Shi, X., Liu, J., Huang, J., Zhou, Y., Xie, Y., & Ma, S. (2014b). A penalized robust method for
identifying gene–environment interactions. Genetic Epidemiology, 38, 220–230.
Shi, X., Zhao, Q., Huang, J., Xie, Y., & Ma, S. (2015). Deciphering the associations between gene expression and copy number alteration using a sparse double laplacian shrinkage approach. Bioinformatics, 31, 3977–3983.
Sklar, M. (1959). Fonctions de Répartition À N Dimensions Et Leurs Marges. Université Paris 8. URL: https://books.google.com.tw/books?id=nreSmAEACAAJ.
Slavov, N., & Dawson, K. A. (2009). Correlation signature of the macroscopic states of the gene regulatory network in cancer. Proceedings of the National Academy of Sciences, 106, 4079–4084.
Smith, V. A., Jarvis, E. D., & Hartemink, A. J. (2002). Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18, S216–S224.
Song, X.-K. (2000). Multivariate dispersion models generated from gaussian copula. Scandinavian Journal of Statistics, 27, 305–320.
Stacy, E. W., & Mihram, G. A. (1965). Parameter estimation for a generalized gamma distribution. Technometrics, 7, 349–358.
Steinhaeuser, K., & Tsonis, A. A. (2014). A climate model intercomparison at the dynamics level. Climate Dynamics, 42, 1665–1670.
Strittmatter, S. M. (2014). Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks. Nature Medicine, 20, 590.
Stuart, J. M., Segal, E., Koller, D., & Kim, S. K. (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science, 302, 249–255.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), (pp. 267–288).
Tichy, N. M., Tushman, M. L., & Fombrun, C. (1979). Social network analysis for organizations. Academy of Management Review, 4, 507–519.
Tooze, J. A., Grunwald, G. K., & Jones, R. H. (2002). Analysis of repeated measures data with clumping at zero. Statistical Methods in Medical Research, 11, 341–355.
Trieschnigg, D., Pezik, P., Lee, V., De Jong, F., Kraaij, W., & Rebholz-Schuhmann, D. (2009). Mesh up: effective mesh text classification for improved document retrieval. Bioinformatics, 25, 1412–1418.
Van Driel, M. A., Bruggeman, J., Vriend, G., Brunner, H. G., & Leunissen, J. A. (2006). A text-mining analysis of the human phenome. European Journal of Human Genetics, 14, 535.
Vidal, M., Cusick, M. E., & Barabási, A.-L. (2011). Interactome networks and human disease. Cell, 144, 986–998.
Voorman, A., Shojaie, A., & Witten, D. (2013). Graph estimation with joint additive models. Biometrika, 101, 85–101.
Wang, W., & Wells, M. T. (2000). Model selection and semiparametric inference for bivariate failure- time data. Journal of the American Statistical Association, 95, 62–72.
Weiss, J. N., Karma, A., MacLellan, W. R., Deng, M., Rau, C. D., Rees, C. M., Wang, J., Wisniewski, N., Eskin, E., Horvath, S. et al. (2012). “good enough solutions”and the genetics of complex diseases. Circulation Research, 111, 493–504.
Werhli, A. V., Grzegorczyk, M., & Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics, 22, 2523–2531.
Witten, D. M., & Tibshirani, R. (2010). Survival analysis with high-dimensional covariates. Statistical methods in medical research, 19, 29–51.
Wu, C., Cui, Y., & Ma, S. (2014). Integrative analysis of gene–environment interactions under a multi- response partially linear varying coefficient model. Statistics in Medicine, 33, 4988–4998.
Wu, J., Vallenius, T., Ovaska, K., Westermarck, J., Mäkelä, T. P., & Hautaniemi, S. (2009). Integrated network analysis platform for protein-protein interactions. Nature Methods, 6, 75.
Wu, M., & Ma, S. (2018). Robust genetic interaction analysis. Briefings in Bioinformatics, .
Yan, J. et al. (2007). Enjoy the joy of copulas: with a package copula. Journal of Statistical Software,
21, 1–21.
Yang, T.-H., & Wu, W.-S. (2013). Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data. BMC systems biology, 7, S13.
Yaveroğlu, Ö. N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza, R., Stojmirovic, A., & Pržulj, N. (2014). Revealing the hidden language of complex networks. Scientific Reports, 4, 4547.
Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4, 1–43.
Zhang, C.-H. et al. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38, 894–942.
Zhao, Q., Shi, X., Xie, Y., Huang, J., Shia, B.-C., & Ma, S. (2014). Combining multidimensional genomic measurements for predicting cancer prognosis: observations from tcga. Briefings in bioinformatics, 16, 291–303.
Zhao, T., Liu, H., Roeder, K., Lafferty, J., & Wasserman, L. (2012). The huge package for high- dimensional undirected graph estimation in r. Journal of Machine Learning Research, 13, 1059– 1062.
Zhou, S. (2009). Thresholding procedures for high dimensional variable selection and statistical estimation. In Advances in Neural Information Processing Systems (pp. 2304–2312).
Zhu, S., Zeng, J., & Mamitsuka, H. (2009). Enhancing medline document clustering by incorporating mesh semantic similarity. Bioinformatics, 25, 1944–1951.
Žitnik, M., Janjić, V., Larminie, C., Zupan, B., & Pržulj, N. (2013). Discovering disease-disease associations by fusing systems-level molecular data. Scientific Reports, 3, 3202.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301–320.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top