跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃志勝
研究生(外文):Huang, Chih-Sheng
論文名稱:腦電波有效性連結之評估
論文名稱(外文):Assessing brain effective connectivity from tonic and phasic EEG dynamics
指導教授:林進燈林進燈引用關係
指導教授(外文):Chin-Teng Lin
口試委員:饒達仁煙淦鍾子平林進燈陳永昇柯立偉
口試委員(外文):Yao, Da-JengYen, Gary G.Jung, Tzyy-PingChin-Teng LinChen, Yong-ShengKo, Li-Wei
口試日期:2015-08-07
學位類別:博士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:英文
論文頁數:99
中文關鍵詞:有效性連結格蘭傑因果分析轉置熵事件相關轉置熵腦和行為關係
外文關鍵詞:Effective connectivityGranger causalitytransfer entropyevent-related transfer entropybrain-behavior relation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:822
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
有效性連結為一種探討大腦神經元因果關係的方法,其主要概念是在不同腦區的神經訊號上找尋訊號間相依程度的變化,進而推導腦區之間因果關係。過去最被廣泛適用來分析有效性連結的方法為格蘭傑因果分析(Granger causality),但因為格蘭傑因果分析統計上的特性以及基本假設導致格蘭傑因果分析在研究使用上會有所拘限。轉置熵(transfer entropy)為另一種基於訊息理論用來探討有效性連結的方式,其不須事先假設交互作用模型和非線性的特性,以及格蘭傑因果分析經由數學推導為轉置熵的一種特例,所以轉置熵在神經科學分析上會較格蘭傑因果分析合適。此外,本研究則進一步提出事件相關轉置熵的分析方法,探討因為事件發生所造成的因果關係變化。在實驗部分,本研究提出模擬實驗和維持注意力駕車實驗探討格蘭傑因果分析和轉置熵進行Tonic和Phasic的有效性連結分析的比較。在模擬資料研究結果顯示轉置熵在線性和非線性的因果關係下皆能表現出良好的偵測能力。而在維持注意力駕車實驗中主要是探討開車嗜睡程度和有效性連結之間的關係。Tonic研究結果顯示在前額葉、中央和頂葉區域的因果強度會在任務成效介於中等程度時會有最大的耦合強度,此證據顯示人類為了維持一定程度的任務成效,腦區間的有效性連結會因此增強。在枕部相關連結證據顯示視覺感覺區的連結強度會隨著嗜睡程度增加而減弱。Phasic研究結果顯示,動態刺激的發生在人類最為清醒的時候會產生較強的連結強度,且隨著嗜睡程度的增加此現象會越來越弱;而隨著真實視覺意識到車輛偏移事件,在枕部部分為果連結時會有連結強度的提升;而在做出反應後在大部分的連結都會發生有效性連結的抑制。此研究顯示出轉置熵在分析有效性分析上會能得到較適合的結果,且轉置熵在探討腦和行為關係的神經科學研究上比起傳統腦波分析更進一步深入了解大腦動態連結。
Effective connectivity, which is commonly used in the study of causal relationships, refers to relationships or dependences among neuronal activities in distant brain regions. Granger causality (GC) is a property that is frequently used to estimate effective connectivity. However, GC is limited by inherent assumptions that may lead to incorrect results. Transfer entropy (TE), which is based on information theory, is an alternative metric of effective connectivity. TE is nonlinear and not dependent on a specific model of interaction. GC is a special case of TE for Gaussian variables. TE is more appropriate to use than GC in the field of cognitive neuroscience. This dissertation proposes event-related transfer entropy, which is based on the sliding window approach and transfer entropy, and constructs a measure of dynamic causality for human behavioral responses to stimuli. Simulation experiments were used to demonstrate the effectiveness of TE and GC. A sustained-attention driving experiment was performed to demonstrate changes in effective connectivity of tonic and phasic analysis for drowsy driving. The simulation experiments revealed that TE is superior to GC at detecting both linear and nonlinear causality. Therefore, TE was used to study the effective connectivity in the sustained-attention driving experiment. In the sustained-attention driving experiment, the tonic results indicated that couplings between pairs of frontal, motor, and parietal areas increased at the intermediate level of task performance. This finding suggests that enhancement of cortico-cortical interaction is necessary to maintain task performance and prevent behavioral lapses. The magnitude of occipital-related connectivity monotonically decreased as the performance declined. This result suggests cortical gating of sensory stimuli during drowsiness. The phasic results revealed an increase in the strength of connectivity following the onset of a stimulus (kinesthetic stimulus) when the task performance was high. This finding indicates that enhanced cortico-cortical interaction in response to a kinesthetic stimulus is required for kinesthetic feedback. An increase in the connectivity of the occipital area suggests that human become conscious of visual stimuli suddenly. Most connectivity is suppressed during human behavioral responses. Neurophysiological evidence of brain-behavior relations provide further insight into distributed brain dynamics and the characteristics of brain-behavior relations in operational environments.
Chinese Abstract............................................................................................... i
English Abstract................................................................................................ iii
Acknowledgement............................................................................................ v
Table of Contents.............................................................................................. vi
List of Tables.................................................................................................... viii
List of Figures................................................................................................... ix

Chapter 1 Introduction - 1 -
1.1 Background - 1 -
1.1.1 Tonic and phasic EEG dynamics - 2 -
1.1.2 Effective connectivity - 4 -
1.2 Motivation - 6 -
1.3 Aims of the Study - 7 -
1.4 Organization of the Dissertation - 8 -
Chapter 2 Quantification of Effective Connectivity - 9 -
2.1. Granger Causality (GC) - 9 -
2.2. Transfer Entropy (TE) - 11 -
2.2.1 Estimation of the embedding space - 13 -
2.2.1.1 Cao criterion - 13 -
2.2.1.2 Ragwitz criterion - 14 -
2.2.2 Calculation of the TE - 15 -
2.3 Equivalence of GC and TE for Gaussian Variables - 17 -
2.4 Event-related Transfer Entropy - 21 -
Chapter 3 Comparison between GC and TE using Simulated Datasets - 23 -
3.1 Experiment 1: Comparison between GC and TE in Assessing Linear and Nonlinear Coupling - 25 -
3.1.1 Simulated EEG data I - 25 -
3.1.2 Results - 27 -
3.2 Experiment 2: Comparison of GC and TE for Assessing Phasic EEG Dynamics - 33 -
3.2.1 Simulated EEG data II - 33 -
3.2.2 Results - 36 -
3.3 Discussions - 40 -
Chapter 4 Assessing Tonic Changes in Effective Connectivity among Real EEG signals - 43 -
4.1 Materials and Methods - 45 -
4.1.1 Participants and data acquisition - 45 -
4.1.2 Experimental environment - 46 -
4.1.3 Experimental paradigm - 47 -
4.1.4 Behavioral data processing - 49 -
4.1.5 Tonic EEG Analysis - 53 -
4.1.6 Statistical analysis, parameter selection of transfer entropy, and EEG of interest - 53 -
4.2 Results - 56 -
4.2.1 Behavioral performance - 56 -
4.2.2 Driving performance (DP)-sorted EEG spectral perturbations - 58 -
4.2.3 DP-sorted EEG connectivity changes - 60 -
4.2.4 Differences of connectivity between distinct categories of driving performance - 62 -
4.3 Discussions - 64 -
4.3.1 Behavioral index of vigilance - 64 -
4.3.2 EEG spectrum correlates of driving performance - 65 -
4.3.3 Inverted-U shaped change of connectivity magnitude - 65 -
4.3.4 Effect of volume conduction - 67 -
Chapter 5 Assessing Phasic Changes in Effective Connectivity among Real EEG Signals - 68 -
5.1 Methods - 68 -
5.1.1 Event-related potential (ERP) - 68 -
5.1.2 Event-related effective connectivity (EREC) - 69 -
5.1.3 Statistical analysis - 69 -
5.2 Results - 71 -
5.2.1 Phasic changes in ERP - 71 -
5.2.2 Phasic changes in EREC - 75 -
5.3 Discussions - 78 -
5.3.1 Relationship between ERP and task performance - 78 -
5.3.2 Relationship between EREC and task performance - 79 -
Chapter 6 Summary And Future Works - 82 -
6.1 Summary - 82 -
6.2 Future Works - 84 -
References - 85 -
[1] C. T. Lin, L. W. Ko, J. C. Chiou, J. R. Duann, R. S. Huang, S. F. Liang, T. W. Chiu, and T. P. Jung, "Noninvasive neural prostheses using mobile and wireless EEG," Proceedings of the IEEE, vol. 96, pp. 1167-1183, Jul 2008.
[2] C. T. Lin, L. D. Liao, Y. H. Liu, I. J. Wang, B. S. Lin, and J. Y. Chang, "Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement," IEEE Transactions on Biomedical Engineering, vol. 58, pp. 1200-1207, May 2011.
[3] C. Iber, S. Ancoli-Israel, A. Chesson, and S. Quan, "The AASM manual for the scoring of and associated events: Rules, terminology and technical specifications," 2007.
[4] F. Ferrillo, M. Beelke, and L. Nobili, "Sleep EEG synchronization mechanisms and activation of interictal epileptic spikes," Clin Neurophysiol, vol. 111 Suppl 2, pp. S65-73, Sep 2000.
[5] S. W. Chuang, L. W. Ko, Y. P. Lin, R. S. Huang, T. P. Jung, and C. T. Lin, "Co-modulatory spectral changes in independent brain processes are correlated with task performance," NeuroImage, vol. 62, pp. 1469-1477, 2012.
[6] P. Luu and D. M. Tucker, "Regulating action: alternating activation of midline frontal and motor cortical networks," Clin Neurophysiol, vol. 112, pp. 1295-306, Jul 2001.
[7] S. Makeig and T. P. Jung, "Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness," Brain Res Cogn Brain Res, vol. 4, pp. 15-25, Jul 1996.
[8] C.-H. Chuang, L.-W. Ko, T.-P. Jung, and C.-T. Lin, "Kinesthesia in a sustained-attention driving task," NeuroImage, vol. 91, pp. 187-202, May 2014.
[9] S. J. Smith, "EEG in the diagnosis, classification, and management of patients with epilepsy," J Neurol Neurosurg Psychiatry, vol. 76 Suppl 2, pp. ii2-7, Jun 2005.
[10] M. Massimini, F. Ferrarelli, S. Sarasso, and G. Tononi, "Cortical mechanisms of loss of consciousness: insight from TMS/EEG studies," Arch Ital Biol, vol. 150, pp. 44-55, Jun-Sep 2012.
[11] D. J. Buysse, C. F. Reynolds, 3rd, D. J. Kupfer, M. J. Thorpy, E. Bixler, R. Manfredi, A. Kales, A. Vgontzas, E. Stepanski, and T. Roth, "Clinical diagnoses in 216 insomnia patients using the International Classification of Sleep Disorders (ICSD), DSM-IV and ICD-10 categories: a report from the APA/NIMH DSM-IV Field Trial," Sleep, vol. 17, pp. 630-7, Oct 1994.
[12] C.-S. Huang, C.-L. Lin, L.-W. Ko, S.-Y. Liu, T.-P. Su, and C.-T. Lin, "Knowledge-based Identification of Sleep Stages based on Two Forehead Electroencephalogram Channels," Frontiers in Neuroscience, vol. 8, September-4 2014.
[13] E. Kochs, P. Bischoff, U. Pichlmeier, and J. Schulte am Esch, "Surgical stimulation induces changes in brain electrical activity during isoflurane/nitrous oxide anesthesia. A topographic electroencephalographic analysis," Anesthesiology, vol. 80, pp. 1026-34, May 1994.
[14] R.-S. Huang, T.-P. Jung, A. Delorme, and S. Makeig, "Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking," NeuroImage, vol. 39, pp. 1896-1909, 2008.
[15] E. Molina, A. Correa, D. Sanabria, and T. P. Jung, "Tonic EEG Dynamics During Psychomotor Vigilance Task," 2013 6th International IEEE/EMBS Conference on Neural Engineering (Ner), pp. 1382-1385, 2013.
[16] S. Makeig, M. Westerfield, T. P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T. J. Sejnowski, "Dynamic brain sources of visual evoked responses," Science, vol. 295, pp. 690-4, Jan 25 2002.
[17] S. Makeig, S. Debener, J. Onton, and A. Delorme, "Mining event-related brain dynamics," Trends in Cognitive Sciences, vol. 8, pp. 204-210, May 2004.
[18] L. Conty, K. N'Diaye, C. Tijus, and N. George, "When eye creates the contact! ERP evidence for early dissociation between direct and averted gaze motion processing," Neuropsychologia, vol. 45, pp. 3024-3037, 2007.
[19] G. A. Light, L. E. Williams, F. Minow, J. Sprock, A. Rissling, R. Sharp, N. R. Swerdlow, and D. L. Braff, "Electroencephalography (EEG) and event-related potentials (ERPs) with human participants," Curr Protoc Neurosci, vol. Chapter 6, pp. Unit 6 25 1-24, Jul 2010.
[20] C.-T. Lin, K.-C. Huang, C.-F. Chao, J.-A. Chen, T.-W. Chiu, L.-W. Ko, and T.-P. Jung, "Tonic and phasic EEG and behavioral changes induced by arousing feedback," NeuroImage, vol. 52, pp. 633-642, August 15 2010.
[21] K. J. Friston, "Functional and effective connectivity in neuroimaging: A synthesis," Human Brain Mapping, vol. 2, pp. 56-78, 1994.
[22] W.-C. Liu, J. F. Flax, K. G. Guise, V. Sukul, and A. A. Benasich, "Functional connectivity of the sensorimotor area in naturally sleeping infants," Brain Research, vol. 1223, pp. 42-49, 2008.
[23] R. Vicente, M. Wibral, M. Lindner, and G. Pipa, "Transfer entropy--a model-free measure of effective connectivity for the neurosciences," J. Comput. Neurosci., vol. 30, pp. 45-67, 2011.
[24] C. J. Werner, T. Stöcker, T. Kellermann, J. Bath, M. Beldoch, F. Schneider, H. P. Wegener, J. N. Shah, and I. Neuner, "Altered motor network activation and functional connectivity in adult tourette's syndrome," Human Brain Mapping, vol. 32, pp. 2014-2026, 2011.
[25] Z. Jiang, X. F. Wang, K. Kisiel-Sajewicz, J. H. Yan, and G. H. Yue, "Strengthened functional connectivity in the brain during muscle fatigue," NeuroImage, vol. 60, pp. 728-737, 2012.
[26] A. Korzeniewska, M. Mańczak, M. Kamiński, K. J. Blinowska, and S. Kasicki, "Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method," Journal of neuroscience methods, vol. 125, pp. 195-207, 2003.
[27] K. J. Blinowska, R. Kuś, and M. Kamiński, "Granger causality and information flow in multivariate processes," Physical Review E, vol. 70, p. 050902, 2004.
[28] L. Astolfi, F. Cincotti, D. Mattia, G. Marciani, L. Baccala, F. de Vico Fallani, S. Salinari, M. Ursino, M. Zavaglia, L. Ding, C. Edgar, G. Miller, B. He, and F. Babiloni, "Comparison of different cortical connectivity estimators for high-resolution EEG recordings," Hum. Brain Mapp., vol. 28, pp. 143-157, 2007.
[29] G. G. Supp, A. Schlögl, N. Trujillo-Barreto, M. M. Müller, and T. Gruber, "Directed Cortical Information Flow during Human Object Recognition: Analyzing Induced EEG Gamma-Band Responses in Brain's Source Space," PLoS ONE, vol. 2, p. e684, 2007.
[30] J.-P. Liu, C. Zhang, and C.-X. Zheng, "Estimation of the cortical functional connectivity by directed transfer function during mental fatigue," Applied Ergonomics, vol. 42, pp. 114-121, 2010.
[31] Z. Liu, Y. Zhang, L. Bai, H. Yan, R. Dai, C. Zhong, H. Wang, W. Wei, T. Xue, Y. Feng, Y. You, and J. Tian, "Investigation of the effective connectivity of resting state networks in Alzheimer's disease: a functional MRI study combining independent components analysis and multivariate Granger causality analysis," NMR in Biomedicine, vol. 25, pp. 1311-1320, 2012.
[32] C. W. J. Granger, "Investigating Causal Relations by Econometric Models and Cross-spectral Methods," Econometrica, vol. 37, pp. 424-438, 1969.
[33] S. Sabesan, L. B. Good, K. S. Tsakalis, A. Spanias, D. M. Treiman, and L. D. Iasemidis, "Information Flow and Application to Epileptogenic Focus Localization From Intracranial EEG," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, pp. 244-253, 2009.
[34] O. Friman, J. Cedefamn, P. Lundberg, M. Borga, and H. Knutsson, "Detection of neural activity in functional MRI using canonical correlation analysis," Magnetic Resonance in Medicine, vol. 45, pp. 323-330, 2001.
[35] P. von Bünau, F. C. Meinecke, F. C. Király, and K.-R. Müller, "Finding Stationary Subspaces in Multivariate Time Series," Physical Review Letters, vol. 103, p. 214101, November 20 2009.
[36] B. Gourévitch and J. J. Eggermont, "Evaluating Information Transfer Between Auditory Cortical Neurons," Journal of Neurophysiology, vol. 97, pp. 2533-2543, March 1 2007.
[37] M. Besserve, B. Schölkopf, N. K. Logothetis, and S. Panzeri, "Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis," Journal of computational neuroscience, vol. 29, pp. 547-566, 2010.
[38] V. A. Vakorin, N. Kovacevic, and A. R. McIntosh, "Exploring transient transfer entropy based on a group-wise ICA decomposition of EEG data," NeuroImage, vol. 49, pp. 1593-1600, 2010.
[39] J. Lee, S. Nemati, I. Silva, B. Edwards, J. Butler, and A. Malhotra, "Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series," BioMedical Engineering OnLine, vol. 11, pp. 1-17, April 13 2012.
[40] T. Schreiber, "Measuring Information Transfer," Physical Review Letters, vol. 85, pp. 461-464, 2000.
[41] S. Olbrich, C. Mulert, S. Karch, M. Trenner, G. Leicht, O. Pogarell, and U. Hegerl, "EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement," NeuroImage, vol. 45, pp. 319-332, 2009.
[42] S. K. L. Lal and A. Craig, "Reproducibility of the spectral components of the electroencephalogram during driver fatigue," International Journal of Psychophysiology, vol. 55, pp. 137-143, 2005.
[43] T. P. Jung, S. Makeig, M. J. McKeown, A. J. Bell, T. W. Lee, and T. J. Sejnowski, "Imaging brain dynamics using independent component analysis," Proceedings of the IEEE, vol. 89, pp. 1107-1122, Jul 2001.
[44] R.-S. Huang, T.-P. Jung, and S. Makeig, "Tonic Changes in EEG Power Spectra during Simulated Driving," in Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience. vol. 5638, D. Schmorrow, I. Estabrooke, and M. Grootjen, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 394-403.
[45] L. Barnett, A. B. Barrett, and A. K. Seth, "Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables," Physical Review Letters, vol. 103, p. 238701, Dec 4 2009.
[46] A. Kraskov, H. Stögbauer, and P. Grassberger, "Estimating mutual information," Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 69, 2004.
[47] K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, and J. Bhattacharya, "Causality detection based on information-theoretic approaches in time series analysis," Physics Reports, vol. 441, pp. 1-46, 2007.
[48] M. Lindner, R. Vicente, V. Priesemann, and M. Wibral, "TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy," BMC Neuroscience, vol. 12, pp. 1-22, November 18 2011.
[49] L. Cao, "Practical method for determining the minimum embedding dimension of a scalar time series," Physica D: Nonlinear Phenomena, vol. 110, pp. 43-50, 1997.
[50] M. Ragwitz and H. Kantz, "Markov models from data by simple nonlinear time series predictors in delay embedding spaces," Physical Review E, vol. 65, p. 056201, May 2002.
[51] W. A. Truccolo, M. Ding, K. H. Knuth, R. Nakamura, and S. L. Bressler, "Trial-to-trial variability of cortical evoked responses: implications for the analysis of functional connectivity," Clin Neurophysiol, vol. 113, pp. 206-26, Feb 2002.
[52] M. Chávez, J. Martinerie, and M. Le Van Quyen, "Statistical assessment of nonlinear causality: application to epileptic EEG signals," Journal of Neuroscience Methods, vol. 124, pp. 113-128, Apr 15 2003.
[53] X. Wang, Y. Chen, and M. Ding, "Estimating Granger causality after stimulus onset: a cautionary note," Neuroimage, vol. 41, pp. 767-76, Jul 1 2008.
[54] A. Omidvarnia, M. Mesbah, J. M. O'Toole, P. Colditz, and B. Boashash, "Analysis of the time-varying cortical neural connectivity in the newborn EEG: A time-frequency approach," in Systems, Signal Processing and their Applications (WOSSPA), 2011 7th International Workshop on, 2011, pp. 179-182.
[55] N. S. Foundation, "2009 Sleep in America Poll," ed, 2009.
[56] S. D. Baulk, L. A. Reyner, and J. A. Horne, "Driver sleepiness--evaluation of reaction time measurement as a secondary task," Sleep, vol. 24, pp. 695-8, Sep 15 2001.
[57] S. K. L. Lal and A. Craig, "Driver fatigue: Electroencephalography and psychological assessment," Psychophysiology, vol. 39, pp. 313-321, 2002.
[58] S. Banks, P. Catcheside, L. Lack, R. R. Grunstein, and R. D. McEvoy, "Low levels of alcohol impair driving simulator performance and reduce perception of crash risk in partially sleep deprived subjects," Sleep, vol. 27, pp. 1063-1067, 2004.
[59] A. Campagne, T. Pebayle, and A. Muzet, "Correlation between driving errors and vigilance level: influence of the driver's age," Physiology &; behavior, vol. 80, pp. 515-524, 2004.
[60] H. J. Eoh, M. K. Chung, and S.-H. Kim, "Electroencephalographic study of drowsiness in simulated driving with sleep deprivation," International Journal of Industrial Ergonomics, vol. 35, pp. 307-320, 2005.
[61] H. D. Rosario, J. S. Solaz, N. Rodríguez, and L. M. Bergasa, "Controlled inducement and measurement of drowsiness in a driving simulator," IET Intell Transp Syst, vol. 4, pp. 280-288, 2010.
[62] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms: McGraw-Hill Higher Education, 2001.
[63] A. Ueno and Y. Uchikawa, "Relation between human alertness, velocity wave profile of saccade, and performance of visual activities," in Proc. 26th IEEE Annual International Conference on Engineering in Medicine and Biology Society (EMBS2004), 2004, pp. 933-935.
[64] M. A. S. Boksem, T. F. Meijman, and M. M. Lorist, "Effects of mental fatigue on attention: An ERP study," Cognitive Brain Research, vol. 25, pp. 107-116, 2005.
[65] S. J. Moeller, D. Tomasi, J. Honorio, N. D. Volkow, and R. Z. Goldstein, "Dopaminergic involvement during mental fatigue in health and cocaine addiction," Transl Psychiatry, vol. 2, p. e176, 2012.
[66] S. D. Baulk, L. A. Reyner, and J. A. Horne, "Driver sleepiness—evaluation of reaction time measurement as a secondary task," Sleep, vol. 24, pp. 695-698, 2001.
[67] F.-C. Lin, L.-W. Ko, C.-H. Chuang, T.-P. Su, and C.-T. Lin, "Generalized EEG-Based Drowsiness Prediction System by Using a Self-Organizing Neural Fuzzy System," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, pp. 2044-2055, 2012.
[68] C.-H. Chuang, L.-W. Ko, Y.-P. Lin, T.-P. Jung, and C.-T. Lin, "Independent Component Ensemble of EEG for Brain Computer Interface," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, pp. 230-238, 2014.
[69] E. Wascher, B. Rasch, J. Sänger, S. Hoffmann, D. Schneider, G. Rinkenauer, H. Heuer, and I. Gutberlet, "Frontal theta activity reflects distinct aspects of mental fatigue," Biological Psychology, vol. 96, pp. 57-65, February 2014.
[70] M. Czisch, R. Wehrle, H. A. Harsay, T. C. Wetter, F. Holsboer, P. G. Sämann, and S. P. A. Drummond, "On the need of objective vigilance monitoring: Effects of sleep loss on target detection and task-negative activity using combined EEG/fMRI," Frontiers in Neurology, vol. 3, April 27 2012.
[71] W. Szelenberger, A. J. Piotrowski T Fau - Dabrowska, and A. J. Dabrowska, "Increased prefrontal event-related current density after sleep deprivation," Acta Neurobiol Exp (Wars), vol. 65, pp. 19-28, 2005.
[72] C. M. Portas, G. Rees, A. M. Howseman, O. Josephs, R. Turner, and C. D. Frith, "A specific role for the thalamus in mediating the interaction of attention and arousal in humans," The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 18, pp. 8979-8989, 1998.
[73] S. P. A. Drummond, G. G. Brown, J. C. Gillin, J. L. Stricker, E. C. Wong, and R. B. Buxton, "Altered brain response to verbal learning following sleep deprivation," Nature, vol. 403, pp. 655-657, 2000.
[74] S. P. Drummond and G. G. Brown, "The effects of total sleep deprivation on cerebral responses to cognitive performance," Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, vol. 25, pp. S68-73, 2001.
[75] S. P. Drummond, J. C. Gillin, and G. G. Brown, "Increased cerebral response during a divided attention task following sleep deprivation," Journal of Sleep Research, vol. 10, pp. 85-92, 2001.
[76] S. P. Drummond, G. G. Brown, J. S. Salamat, and J. C. Gillin, "Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation," Sleep, vol. 27, pp. 445-451, 2004.
[77] L. Fogassi and G. Luppino, "Motor functions of the parietal lobe," Current Opinion in Neurobiology, vol. 15, pp. 626-631, 2005.
[78] M. Massimini, F. Ferrarelli, R. Huber, S. K. Esser, H. Singh, and G. Tononi, "Breakdown of Cortical Effective Connectivity During Sleep," Science, vol. 309, pp. 2228-2232, September 30 2005.
[79] S. K. Esser, S. Hill, and G. Tononi, "Breakdown of Effective Connectivity During Slow Wave Sleep: Investigating the Mechanism Underlying a Cortical Gate Using Large-Scale Modeling," Journal of Neurophysiology, vol. 102, pp. 2096-2111, October 1 2009.
[80] S. Haufe, V. V. Nikulin, K.-R. Müller, and G. Nolte, "A critical assessment of connectivity measures for EEG data: A simulation study," NeuroImage, vol. 64, pp. 120-133, January 1 2013.
[81] N. Yeung, R. Bogacz, C. B. Holroyd, and J. D. Cohen, "Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods," Psychophysiology, vol. 41, pp. 822-32, Nov 2004.
[82] A. Sterkin, O. Yehezkel, Y. S. Bonneh, A. Norcia, and U. Polat, "Backward masking suppresses collinear facilitation in the visual cortex," Vision Research, vol. 49, pp. 1784-1794, 2009.
[83] A. Guillot, C. Collet, V. A. Nguyen, F. Malouin, C. Richards, and J. Doyon, "Brain activity during visual versus kinesthetic imagery: An fMRI study," Hum Brain Mapp, vol. 30, pp. 2157-2172, 2008.
[84] A. Papana, D. Kugiumtzis, and C. Kyrtsou, "A Nonparametric Causality Test: Detection of Direct Causal Effects in Multivariate Systems Using Corrected Partial Transfer Entropy," in Topics in Nonparametric Statistics. vol. 74, M. G. Akritas, S. N. Lahiri, and D. N. Politis, Eds., ed: Springer New York, 2014, pp. 197-206.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top