|
1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669. 2. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7(11): p. 699-712. 3. Xiao, D., et al., Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Physical Review Letters, 2012. 108(19). 4. Mak, K.F., et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13). 5. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150. 6. Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5(7): p. 487-496. 7. Huang, C.M., et al., Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nature Materials, 2014. 13(12): p. 1096-1101. 8. Li, M.Y., et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 2015. 349(6247): p. 524-528. 9. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425. 10. Gong, Y.J., et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014. 13(12): p. 1135-1142. 11. Tongay, S., et al., Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers. Nano Letters, 2014. 14(6): p. 3185-3190. 12. Hu, X.H., L.Z. Kou, and L.T. Sun, Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures. Scientific Reports, 2016. 6. 13. Wang, Y., et al., Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Physical Review B, 2017. 95(11). 14. Oyedele, A.D., et al., PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. Journal of the American Chemical Society, 2017. 139(40): p. 14090-14097. 15. Soulard, C., et al., Experimental and theoretical investigation on the relative stability of the PdS2- and pyrite-type structures of PdSe2. Inorganic Chemistry, 2004. 43(6): p. 1943-1949. 16. Sun, J.F., et al., Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Applied Physics Letters, 2015. 107(15). 17. Ling, X., et al., Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. Nano Letters, 2015. 15(6): p. 4080-4088. 18. Puretzky, A.A., et al., Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2d Materials, 2018. 5(3). 19. Franken, P.A., et al., Generation of Optical Harmonics. Physical Review Letters, 1961. 7(4): p. 118-&. 20. Kumar, N., et al., Second harmonic microscopy of monolayer MoS2. Physical Review B, 2013. 87(16). 21. Malard, L.M., et al., Observation of intense second harmonic generation from MoS2 atomic crystals. Physical Review B, 2013. 87(20). 22. Li, Y.L., et al., Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation. Nano Letters, 2013. 13(7): p. 3329-3333. 23. Kim, C.J., et al., Stacking Order Dependent Second Harmonic Generation and Topological Defects in h-BN Bilayers. Nano Letters, 2013. 13(11): p. 5660-5665. 24. Zeng, H.L., et al., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific Reports, 2013. 3. 25. Boyd, R.W., Nonlinear Optics. Third Edition ed. 2007, Rochester, New York: Elsevier Science Publishing Co Inc. 26. Shen, Y.R., The principles of nonlinear optics. 1984, New York: J. Wiley. xii, 563 p. 27. Lee, Y.H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325. 28. Huang, J.K., et al., Large-Area Synthesis of Highly Crystalline WSe2 Mono layers and Device Applications. Acs Nano, 2014. 8(1): p. 923-930. 29. Wu, J.X., et al., Identifying the Crystalline Orientation of Black Phosphorus Using Angle-Resolved Polarized Raman Spectroscopy. Angewandte Chemie-International Edition, 2015. 54(8): p. 2366-2369. 30. Liang, L.B., et al., Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. Acs Nano, 2017. 11(12): p. 11777-11802. 31. Zhao, Y.Y., et al., Inter layer Breathing and Shear Modes in Few-Trilayer MoS2 and WSe2. Nano Letters, 2013. 13(3): p. 1007-1015. 32. Saito, R., et al., Raman spectroscopy of transition metal dichalcogenides. Journal of Physics-Condensed Matter, 2016. 28(35). 33. Zhang, X., et al., Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 2016. 8(12): p. 6435-6450. 34. Huang, S.X., et al., Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2. Nano Letters, 2016. 16(2): p. 1435-1444. 35. Hsu, W.T., et al., Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nature Communications, 2018. 9. 36. Wu, S.F., et al., Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nature Physics, 2013. 9(3): p. 149-153. 37. Yuan, H.T., et al., Zeeman-type spin splitting controlled by an electric field. Nature Physics, 2013. 9(9): p. 563-569.
|