一、網頁參考文獻
1. WHO世界各地區預期壽命。線上檢索日期:2017年06月12日。網址:http://apps.who.int/gho/data/view.main.SDG2016LEXREGv?lang=en
2. WHO跌倒意外傷害報導。線上檢索日期:2017年06月12日。網址:http://www.who.int/mediacentre/factsheets/fs344/zh/
3. 聯合新聞網。跌倒傷害。線上檢索日期:2017年06月12日。網址: https://udn.com/news/story/7016/2438165
4. 穿戴式科技銷售成長統計報告。線上檢索日期:2017年06月12日。網址: http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=12139
5. 智慧型手錶成長率專欄。線上檢索日期:2017年06月12日。網址:http://archive.eettaiwan.com/www.eettaiwan.com/ART_8800719505_622964_NT_0ca861bb.HTM
6. 加速規與陀螺儀原理與應用。線上檢索日期:2017年06月12日。網址:http://archive.eettaiwan.com/www.eettaiwan.com/ART_8800701519_480502_TA_e52a9104.HTM
7. MATLAB Genetic Algorithm Toolbox。MATLAB GA函式庫。線上檢索日期:2017年06月12日。網址:https://cn.mathworks.com/help/gads/gaoptimset.html
8. Lagrange Multipliers Tutorial in the Context of Support Vector Machines。Lagrange Multipliers method。線上檢索日期:2017年06月12日。網址:http://www.engr.mun.ca/~baxter/Publications/LagrangeForSVMs.pdf
9. Firebase。Firebase雲端開發平台。線上檢索日期:2017年06月12日。網址:https://firebase.google.com/
10. Android Developes。SendorEvent。線上檢索日期:2017年06月12日。網址: https://developer.android.com/reference/android/hardware/SensorEvent.html
11. ASUS ZenWatch (WI500Q)。線上檢索日期:2017年06月12日。網址:https://www.asus.com/tw/ZenWatch/ZenWatch_WI500Q/
二、中文參考文獻
12. 陳冠均(2010)。可穿戴式位置感知跌倒偵測系統之設計研究,中國民國,臺北,國立陽明大學醫學工程系碩士班碩士論文。13. 劉建賢(2011)。使用加速際與陀螺儀之跌倒偵測系統,中華民國,臺北,大同大學資訊工程碩士班碩士論文。14. 邱俊賓(2011)。腕錶式跌倒偵測系統之開發,中華民國,臺北,國立陽明大學醫學工程系碩士班碩士論文。15. 蔡昇倫(2012)。智慧型手機之跌倒偵測系統設計,中華民國,臺南,長榮大學資訊管理學系碩士班碩士論文。16. 鍾明宏(2015)。 支持向量機結合基因演算法應用於跆拳道分類,中華民國,臺北,臺北市立大學資訊科學系碩士班碩士論文。三、英文參考文獻
17. World Health Organization(2007). WHO global report on falls prevention in older age. World Health Organization, Geneva, Switzerland.
18. Degen, T., Jaeckel, H., Rufer, M., Wyss, S. (2005). SPEEDY: a fall detector in a wrist watch Proc. Seventh IEEE International Symposium on Wearable Computin, pp. 184-187.
19. Hsieh, S.L., Chen, C.C., Wu, S.H., Yue, T.W. (2014). A wrist-worn fall detection system using accelerometers and gyroscopes, Networking Sensing and Control. pp. 518-523.
20. Coters, C., Vapnik, V. (1995). Support-Vector Networks. Machine Leaning, Vol.20. pp. 273-297.
21. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.F., Steinbach, M., Hand, D.J., Steinberg, D. (2008). Top 10 Algorithm in data mining. Knowledge and Information System, Vol. 14, pp. 1-37.
22. Adam, W., Ganesan, D., Hanson, A. (2007). Aging in place: fall detection and localization in a distributed smart camera network, Proceedings of the 15th international conference on Multimedia, pp. 892-901.
23. Doukas, C., & Maglogiannis, I. (2008). Advanced patient or elder fall detection based on movement and sound data. PervasiveHealth’08, pp. 103–107.
24. Mubashir, M., Shao, L., Seed, L. (2013). A survey on fall detection: Principles and approaches, Neurocomputing, Vol. 100, pp. 144–152.
25. Yu, M., Rhuma, A., Naqvi, S., Wang, L., Chambers, J. (2012). A Posture Recognition-Based Fall Detection System for Monitoring an Elderly Person in a Smart Home Environment, IEEE Trans Inf Technol Biomed, Vol. 16, pp. 1274-1286.
26. Tong, L., Song, Q., Ge, Y., Liu, M. (2013). HMM-Based Human Fall Detection and Prediction Method Using Tri-Axial Accelerometer, IEEE Sensors Journal, Vol. 13, pp. 1849-1856.
27. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, MI.
28. Leardi, R., Boggia, R., Terrile, M.(1992). Genetic algorithms as a strategy for feature selection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, pp. 267-281.
29. Jain, A.K., Mao, J., Mohiuddin, K.M. (1997). Feature selection: evaluation, application, and small sample performance, IEEE Transactions on Pattern Analysis and Machine Intelligence.
30. Huang, C.L., Wang, C.J. (2006). A GA-based feature selection and parameters optimizationfor support vector machines, Expert Systems with Applications, Vol. 31, pp. 231–240.
31. Mathie, M.J., Lovell, N.H., Coster, A.C.F., Celler, B.G. (2002). Determining Activity Using a Triaxial Accelerometer, Engineering in Medicine and Biology, 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference.
32. Suykens, J. A., & Vadewalle, J. (1999). Least squares support vetoe machine classifiers. Neural processing letters, Vol. 9, pp. 293-300.
33. Chang, C. C., Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, Vol. 2, pp. 1-27.
34. Foody, G. M., & Mathur, A. (2004). Toward intelligent training of supervised image classifications: directing traing data acquisition for SVM calssification. Remote Sensing of Environment, Vol. 93, pp. 107-117.