跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 04:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭建宏
研究生(外文):Kuo, Chien-Hung
論文名稱:探討以石墨烯修飾IGZO工作電極雙層結構可撓式陣列型TiO2染敏太陽能電池模組於低照度之光伏特性 、等效電路分析與即時監控系統之研究
論文名稱(外文):Investigation on Photovoltaic Properties of Flexible Arrayed Dye-sensitized Solar Cell Based on IGZO/ TiO2 Double Layered Structure Modified by Graphene under the Low Illumination and Study on Impedance Analysis and Wireless-based Remote Real-time Monitoring System
指導教授:周榮泉周榮泉引用關係
指導教授(外文):Chou, Jung-Chuan
口試委員:周榮泉周學韜賴志賢廖義宏許渭州
口試委員(外文):Chou, Jung-ChuanChou, Hsueh-TaoLai, Chih-HsienLiao, Yi-HungHsu, Wei-Chou
口試日期:2018-07-02
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:266
中文關鍵詞:染料敏化太陽能電池氧化銦鎵鋅還原氧化石墨烯低照度生命期穩定度
外文關鍵詞:dye-sensitized solar cellindium gallium zinc oxidereduced graphene oxidelow illuminationlife-timestability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一增進染料敏化太陽能電池(dye-sensitized solar cell, DSSC)光電轉換效率 (photovoltaic conversion efficiency, η)之結構,結構分為兩部分,第一部份為以水熱法 (hydro-thermal method)合成二氧化鈦 (titanium dioxide, TiO2) - 還原氧化石墨烯 (reduced graphene oxide, RGO)之複合材料並用於染料吸附層。第二部份為於染料吸附層與電解液 (electrolyte)間以濺鍍備製氧化銦鎵鋅 (indium gallium zinc oxide, IGZO),並以太陽光模擬器 (sun light simulation system)、電化學阻抗分析儀 (electrochemical impedance spectroscopy, EIS) 配合一等效電路模型(equivalent circuit model)、場發射掃描式電子顯微鏡 (field emission scanning electron microscopy, FE-SEM)、能量色散X射線光譜 (energy dispersive X-ray spectrometer, EDS)、紫外線/可見光光譜儀 (ultraviolet-visible spectrophotometer, UV-Visible)、X射線光電子能譜儀/化學分析電子光譜 (X-ray photoelectron spectroscopy, XPS/ electron spectroscopy for chemical analysis, ESCA)、X光繞射儀(X-ray diffractometer, XRD)、拉曼光譜儀 (Raman spectroscopy)以及穿透式電子顯微鏡 (transmission electron microscope),探討還原氧化石墨烯 (RGO)與氧化銦鎵鋅(IGZO)應用於染料敏化太陽能電池之光電特性及串並聯模組 (series-parallel connection module)對染料敏化太陽能電池於低照度下 (under the low illumination)之光伏特性 (photovoltaic performance)、異質接面處之界面阻抗 (internal interface impedance)、表面形態 (surface morphology)、薄膜厚度 (thickness)、薄膜元素組成成分及能帶圖 (energy band diagram)與薄膜晶相 (crystal phase)。經由實驗結果得知因還原氧化石墨烯之高遷移率,其可以減短電荷轉移路徑,即由二氧化鈦的導電帶傳輸至導電玻璃之導電帶之路徑,即減少光生電子 (photo-generated electrons)與氧化染料分子 (oxidized-dye molecule)之復合機率,且薄膜能隙下降,其可以增加吸收光波段,增加光捕獲量,而還原氧化石墨烯之高比表面積 (high specific surface area)特性提升染料負載量。而氧化銦鎵鋅之功用為形成一能量阻擋層 (energy barrier),阻擋光生電子與碘離子 (I-3)復合的機率,意即降低逆向復合 (reverse recombination)。以上二種修飾光陽極之方法皆可以提升太陽能電池的短路電流密度 (short-circuit current density, Jsc)。染料敏化太陽能電池處於低照度(low illumination)環境下效率有上升之趨勢,其原因為照度下降、光捕獲量下降,造成光生電子 (photo-generated electron)數目減少,所以電子間之散射 (scattering)下降,即光生量子效率 (photoluminescence quantum yield)上升。再將封裝完成之元件藉由電源量測單位(source measure unit, SMU)及國家儀器(National Instruments)之LabVIEW軟體進行無線遠端即時監控 (wireless-based remote real-time monitor),分析元件於長時間下之穩定度 (stability)、生命期 (life-time)。
In this thesis, a way to improve the photovoltaic conversion efficiency (η) of dye-sensitized solar cell (DSSC) has been provided. The structure was divided into two parts. In the first part, the reduced graphene oxide (RGO) - TiO2 composite was fabricated by using hydro-thermal method, which was acted as the dye - adsorbed layer. In the second part, the indium gallium zinc oxide (IGZO) was deposited between dye-adsorbed layer and electrolyte by using sputter system. The DSSC was investigated by electrochemical impedance spectroscopy (EIS), sun light simulation system, field emission scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), ultraviolet-visible spectrophotometer (UV-Visible), X-ray photoelectron spectroscopy (XPS)/electron spectroscopy for chemical analysis (ESCA), X-ray diffractometer (XRD), Raman spectroscopy and transmission electron microscope (TEM). We investigated the photovoltaic properties, series-parallel connection module, internal interface impedance, surface morphology and energy band diagram of arrayed dye-sensitized solar cell based on RGO - TiO2 /IGZO photoelectrode under low illumination. According to the experimental results, due to the high mobility of RGO, which acted as a bridge and accelerated the electron transportation from conduction band of titanium dioxide to conduction band of fluorine doped tin oxide (FTO) glass. That was to say, probability of electron recombination between photo-generated electrons and oxidized-dye molecule was reduced. Furthermore, the energy band gap of dye-adsorbed layer decreased after introducing RGO, which could extend the wavelength range of absorbed-light. Particularly, the amount of harvesting-light is increased. In addition, the high specific surface of RGO was able to increase the amount of dye-loading. The IGZO film was acted as an energy barrier to prevent I-3 from recombining with electrons, which means that it could reduce the probability of reverse recombination. Those modifications of photoelectrode could improve the short-circuit current density (Jsc) of DSSC. Because the photo-generated electrons were reduced with decrease in illumination intensity, that indicated the scattering among electrons was reduced. In order words, the photoluminescence quantum yield (PLQY) will be increased, and the photovoltaic conversion efficiency of DSSC could increase under lower illumination intensity. Finally, the device was investigated by using the wireless-based remote real-time monitor, stability and life-time by source measure unit (SMU) and LabVIEW from National Instruments.
Content
摘要 i
Abstract iv
誌謝 vii
Content ix
List of Tables xiii
List of Figures xv
Chapter 1 1
Background and Motivation 1
1.1 Background 1
1.1.1 Dye-sensitized Solar Cell 2
1.1.2 Flexible Dye-sensitized Solar Cell 4
1.1.3 Development of Working Electrode 4
1.1.4 Development of Sensitized-dye 6
1.1.5 Development of Electrolyte 7
1.1.6 Development of Counter Electrode 7
1.2 Motivates and Purpose 8
1.3 Synopsis of the Dissertation 10
Chapter 2 18
Introduction 18
2.1 Structure of Dye-sensitized Solar Cell 18
2.1.1 Transparent Substrate for the Electrode of DSSC 18
2.2 Working Principles for Dye-sensitized Solar Cell 19
2.2.1 Charge Recombination 21
2.3 Materials for Photoelectrode 22
2.3.1 Reduce Graphene Oxide 22
2.3.2 Indium Gallium Zinc Oxide 23
2.4 Definition of Photovoltaic parameters 25
2.4.1 Open Circuit Voltage (Voc) 26
2.4.2 Short Circuit Current Density (Jsc) 27
2.4.3 Fill Factor (F.F) 27
2.4.4 Photovoltaic Conversion Efficiency (η) 28
2.5 Principles of Measurement Facilities 31
2.5.1 Scanning Electron Microscope(SEM) 31
2.5.2 X-ray Photoelectron Spectroscopy(XPS) or 33
Electron Spectroscopy for Chemical Analysis (ESCA) 33
2.5.3 Auger Electron Spectroscopy(AES) 34
2.5.4 Transmission Electron Microscope(TEM) 35
2.5.5 Ultraviolet and visible spectroscopy(UV-Visible) 36
2.5.6 Electrochemical Impedance Spectroscopy(EIS) 37
2.5.7 Radio Frequency Sputter 40
Chapter 3 68
Experiment 68
3.1 Materials 68
3.2 Fabrication Processes 69
3.2.1 Substrate Cleanig 70
3.2.2 Fabrication of TiO2 – RGO Composite and Paste 70
3.2.3 Fabrication of IGZO- TiO2 - Reduced Graphene Oxide Composited Photoelectrode 71
3.2.4 Fabrication of Platinum Counter Electrode 72
3.2.5 Fabrication of Electrolyte 74
3.2.6 Fabrication of Dye 74
3.2.7 Fabrication of Dye-sensitized Solar Cell in series - parallel 74
3.3 Measurement Systems 75
3.3.1 Solar Simulator Measurement System 75
3.3.2 Electrochemical Impedance Spectroscopy (EIS) 75
3.3.3 Ultraviolet-Visible Spectroscopy (UV-vis) 76
3.3.4 Furnace 77
3.3.5 Radio Frequency Sputtering System 77
Chapter 4 88
Result and Discussion 88
4.1 Comparisons for Performances of DSSC Based on Photoelectrode with Various Weight Percentages of RGO 88
4.2 Characteristics of TiO2-Reduced Graphene Oxide Composite 91
4.2.1 Morphology 91
4.2.2 Component Analysis 91
4.2.3 Raman Spectra of TiO2-RGO Composite 92
4.2.4 Transmission Electron Microscope Measurement for TiO2-RGO Composite 93
4.2.5 X-Ray Diffraction of TiO2-RGO Composite 93
4.3 Comparisons of Performances of DSSCs Based on TiO2-IGZO Photoelectrode and TiO2 Photoelectrode 94
4.4 Characteristics of Indium Gallium Zinc Oxide Film 98
4.4.1 Scanning Electron Microscope (SEM) 98
4.4.2 X-ray Diffraction (XRD) 99
4.4.3 X-ray Photoelectron Spectroscopy (XPS) 99
4.4.4 The Estimation of Band Gap 101
4.4.5 Ultroviolet Photoelectron Spectrometer (UPS) 102
4.4.6 Auger Electron Spectroscopy (AES) Depth Profile 104
4.5 Comparisons of Performances of DSSC Based on TiO2-RGO- IGZO and TiO2 Photoelectrodes 104
4.6 Photovoltaic Performances of DSSCs in Series and Parallel 107
4.7 Photovoltaic Performances of DSSCs in Serial and Parallel Structure under Lower Illumination 112
4.7.1 Electrochemical impedance spectroscopic for DSSCs in Serial and Parallel Structure under Lower Illumination Intensity 114
4.8 Photovoltaic Performances of DSSCs in Serial and Parallel Structure under Fluorescent lamp 117
4.8.1 Electrochemical Impedance Spectroscopic of DSSCs in Serial and Parallel Structure under Fluorescent Lamp 118
4.9 Stability for Photovoltaic Properties of Dye-Sensitized Solar Cell by Wireless-based Remote Real-time Monitoring System 121
Chapter 5 185
Conclusions 185
Chapter 6 189
Future Prospects 189
References 190


List of Tables

Table 3-1 Characteristics of FTO-glass and ITO-PET substrates 87
Table 4-1 The photovoltaic performances of DSSC based on photoelectrodes with various weight percentages of RGO. 165
Table 4-2 The specific surface area and amount of dye adsorption of photoelectrode based on vervious weight percentage of RGO and TiO2. 166
Table 4-3 The photovoltaic performances of DSSCs based on various deposition time for IGZO film on TiO2 photoelectrode 167
Table 4-4 The photovoltaic performances of DSSCs based on TiO2 - IGZO photoelectrode, TiO2 photoelectrode and literatures [138,139]. 168
Table 4-5 The resistance values of equivalent circuit of DSSCs based on TiO2 - IGZO photoelectrode, TiO2 photoelectrode and literatures [138,139]. 169
Table 4-6 The photovoltaic parameters of DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP), TiO2 photoelectrode (TP) and literatures [138,139,155,156]. 170
Table 4-7 The values of components in the equivalent circuit for the DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP), TiO2 photoelectrode (TP) and literatures [138,139]. 171
Table 4-8 The photovoltaic parameters of DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in series. 172
Table 4-9 The values of components in the equivalent circuit for the DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in series. 173
Table 4-10 The photovoltaic parameters of DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in parallel. 174
Table 4-11 The values of components in the equivalent circuit for the DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in parallel. 175
Table 4-12 The photovoltaic parameters of DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in two series and two parallel. 176
Table 4-13 The comparison of photovoltaic parameters of DSSC with other literature [159,160]. 177
Table 4-14 The values of components in the equivalent circuit for the DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in two series and two parallel. 178
Table 4-15 The photovoltaic parameters of flexible DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in series and parallel. 179
Table 4-16 The photovoltaic parameters of DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in series and parallel under low illumination. 180
Table 4-17 The photovoltaic parameters of DSSCs based on TiO2 photoelectrode (TP) in series and parallel under low illumination. 181
Table 4-18 The values of components in the equivalent circuit for the DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in series and parallel under low illumination. 182
Table 4-19 The photovoltaic parameters of DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in series and parallel under fluorescent lamp 183
Table 4-20 The values of components in the equivalent circuit for the DSSCs based on TiO2 -RGO-IGZO photoelectrode (TGIP) in series and parallel under fluorescent lamp. 184


List of Figures

Fig. 1-01. The productions annual growth forecast for photovoltaic energies 14
Fig. 1-02. The efficiency chart of various classes of solar energy conversion devices 15
Fig. 1-03. The molecule structures of N3 dye, N621 dye and N719 dye 16
Fig. 1-04. The flow chart of this thesis. 17
Fig. 2-01. The working principle of dye-sensitized solar cell [66] 42
Fig. 2-02. The energy diagram of reverse recombination 43
Fig. 2-03. The molecule structure of graphene [77] 44
Fig. 2-04. The molecule structure of graphene [78] 45
Fig. 2-05. The molecule structure of reduced graphene oxide [79] 46
Fig. 2-06. The atom localization for crystal IGZO [88] 47
Fig. 2-07. The atom localization for crystal IGZO [89] 48
Fig. 2-08. The atom bonding perspective for (a) silicon and (b) IGZO [90] 49
Fig. 2-09. The schematic diagram of open circuit voltage [97] 50
Fig. 2-10. The schematic diagram of fill factor [98] 51
Fig. 2-11. The relation between F.F., Rsh(shunt resistance), current density, Rs (series resistance) and voltage 52
Fig. 2-12. The instrument appearance of SEM [105] 53
Fig. 2-13. The instrument structure of SEM [106] 54
Fig. 2-14. The instrument mechanism of SEM [107] 55
Fig. 2-15. The instrument mechanism of EDS [108] 56
Fig. 2-16. The instrument mechanism of XPS [109] 57
Fig. 2-17. The instrument appearance of XPS [110] 58
Fig. 2-18. The instrument mechanism of AES [111] 59
Fig. 2-19. The mechanism of Auger electron [112] 60
Fig. 2-20. The instrument mechanism of TEM 61
Fig. 2-21. The instrument apperance of TEM [116]. 62
Fig. 2-22. The ultraviolet / visible spectrophotometer [120] 63
Fig. 2-23. The electrical equivalent circuits for EIS [122] 64
Fig. 2-24. The electronic components for EIS analysis result (a) single resistance; (b)single capacitance [123] 65
Fig. 2-25. The electronic components for EIS analysis result (a) series between resistance and capacitance; (b) parallel between resistance and capacitance [123] 66
Fig. 2-26. The mechanism of sputter 67
Fig. 3-01. The flow chart of DSSC fabrication 78
Fig. 3-02. The image of heater and autoclave 79
Fig. 3-03. The appearance for composite powder of reduced graphene oxide-TiO2 80
Fig. 3-04. The appearance of J-V measurement system 81
Fig. 3-05. The theoretical model for DSSC in EIS measurement 82
Fig. 3-06. The appearance of EIS measurement system 84
Fig. 3-07. The appearance of furnace system 85
Fig. 3-08. The appearance of radio frequency(R.F.) sputtering system 86
Fig. 4-01. The J-V curves of DSSC based on photoelectrode with various weight percentages of RGO 122
Fig. 4-02. The SEM image of TiO2-RGO composite powder 123
Fig. 4-03. The component analysis of TiO2-RGO composite powder from 124
EDS 124
Fig. 4-04. The Raman spectra of TiO2 – RGO composite and RGO powder 125
Fig. 4-05. The transmission electron microscope (TEM) image of TiO2 – RGO composite particle 126
Fig. 4-06. The high-resolution transmission electron microscope (TEM) image of TiO2 – RGO composite particle 127
Fig. 4-07. The X-ray diffraction (XRD) pattern of TiO2 – RGO composite; (*) fase TiO2 anatase. 128
Fig. 4-08. The current density-voltage curves for DSSCs based on TiO2-IGZO photoelectrode. 129
Fig. 4-09. The current density-voltage curve and dark J-V curve for DSSC based on TiO2-IGZO photoelectrode. 130
Fig. 4-10. The current density-voltage curve and dark J-V curve for DSSC based on TiO2 photoelectrode 131
Fig. 4-11. The Nyquist plots and equivalent circuit for DSSCs based on TiO2 -IGZO photoelectrode and TiO2 photoelectrode. 132
Fig. 4-12. The energy band diagram for DSSC based on TIP. 133
Fig. 4-13. The morphology images of (a)TiO2 ; (b) TiO2 – IGZO composite film. 134
Fig. 4-14. The XRD patterns of TiO2 and TiO2-IGZO (*) fase TiO2 anatase 135
Fig. 4-15. The XPS spectrum of In 3d5/2 in IGZO film. 136
Fig. 4-16. The XPS spectrum of Ga 2p3/2 in IGZO film 137
Fig. 4-17. The XPS spectrum of Zn 2p3/2 in IGZO film. 138
Fig. 4-18. The XPS spectrum of O 1s in IGZO film. 139
Fig. 4-19. (a) The transmittance of IGZO film;(b)The relationship between (αhυ)2 and hv for IGZO film. 140
Fig. 4-20. The ultroviolet photoelectron spectrometer (UPS) for IGZO film. 141
Fig. 4-21. The depth profile of auger electron spectroscopy (AES) for IGZO – TiO2 composite film. 142
Fig. 4-22. The J-V curves of the DSSCs based on TiO2-RGO-IGZO photoelectrode (TGIP) and TiO2 photoelectrode (TP). 143
Fig. 4-23. (a) The equivalent circuit for the DSSC ; (b)The Nyquist plots of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and TiO2 photoelectrode. 144
Fig. 4-24. The absorptivity of the N719 dye, which was desorbed from TiO2 – RGO – IGZO photoelectrode and TiO2 photoelectrode. 145
Fig. 4-25. The current - voltage of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and DSSCs in series. 146
Fig. 4-26. (a) The equivalent circuit for the DSSC ; (b)The Nyquist plots of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and DSSCs in series. 147
Fig. 4-27. The current - voltage of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and DSSCs in parallel. 148
Fig. 4-28. (a) The equivalent circuit for the DSSC ; (b)The Nyquist plots of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and DSSCs in parallel. 149
Fig. 4-29. The current - voltage of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and DSSCs in series and parallel. 150
Fig. 4-30. (a) The equivalent circuit for the DSSC ; (b)The Nyquist plots of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and DSSCs in series and parallel. 151
Fig. 4-31. The real picture for two DSSCs are in series. 152
Fig. 4-32. The real picture for two DSSCs are in parallel. 153
Fig. 4-33. The real picture for four DSSCs are in series and parallel. 154
Fig. 4-34. The current-voltage curves of flexible DSSC based on TiO2 – RGO – IGZO photoelectrode and DSSCs in two series and two parallel. 155
Fig. 4-35. The current-voltage curves of DSSC based on TiO2 – RGO – IGZO photoelectrode and DSSCs in series and parallel under low illumination. 156
Fig. 4-36. (a) The equivalent circuit for DSSCs ; (b)The Nyquist plots of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and four DSSCs in series and parallel under low illumination. 157
Fig. 4-37. The current-voltage curves of DSSC based on TiO2 – RGO – IGZO photoelectrode and DSSCs in series and parallel under T5 fluorescent lamp. 158
Fig. 4-38. (a) The equivalent circuit for DSSCs ; (b)The Nyquist plots of the DSSCs based on TiO2 – RGO – IGZO photoelectrode and four DSSCs in series and parallel under low illumination. 159
Fig. 4-39. The spectrum of solar simulator. 160
Fig. 4-40. The spectrum of T5 fluorescent lamp. 161
Fig. 4-41 The specification of DSSCs in two series and two parallel. 162
Fig. 4-42 The schematic diagram for wireless-based remote real-time monitoring system. 163
Fig. 4-43 stability analysis for photovoltaic conversion efficiency of DSSC which is sealed by surlyn for 12 hours. 164



References

[1]B. Li, L. Wang, B. Kang, Y. Qiu, “Review of recent progress in solid-state dyesensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 549-573, Jul. 2006.
[2]Y. Jiang, J. Xu, Y. Sun, C. Wei, J. Wang, D. Ke, X. Li, J. Yang, X. Peng, B. Tang, “Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system,” Applied Energy, vol. 190, pp. 1126-1137, Jan. 2017.
[3]V. Chilkoti, T. Bolisetti, R. Balachandar, “Climate change impact assessment on hydropower generation using multi-model climate ensemble,” Renew. Energ., vol. 109, pp. 510-517, Apr. 2017.
[4]D. Tonini, C. Vadenbo, T. F. Astrup, “Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective,” Energy, vol. 124, pp. 295-309, Aug. 2017.
[5]S. S. Martin, A. Chebak, “Concept of educational renewable energy laboratory integrating wind, solar and biodiesel energies,” Int. J. Hydrogen Energy, vol. 41, pp. 21036-21046, Jun. 2016.
[6]R. Donaldson, E. Lord, “Challenges for the implementation of the renewable heat incentive - an example from a school refurbishment geothermal scheme,” Sustainable Energy Technologies and Assessments, vol. 7, pp. 30-33, Sep. 2014.
[7]http://blog.chinahcpv.com/
[8]A.Pandey ,V. Tyagi , A. Jeyraj , L. Selvaraj, N. Rahim, S. Tyagi, “Recent advances in solar photovoltaic systems for emerging trends and advanced applications,” Renew. Sustain. Energy Rev., vol. 53, pp. 859-884, Nov. 2016.
[9]M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables version 49,” Prog. Photovolt., vol. 25, pp. 3-13, Nov. 2016.
[10]H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye-sensitized zinc oxide: aqueous electrolyte: platinum photocell,” Nature, vol. 261, pp. 402-403, Dec. 1976.
[11]M. K. Nazeeruddin, E. Baranoff, M. Grätzel, “Dye-sensitized solar cells: a brief overview,” Sol. Energy, vol.85, pp.1172– 1178, Apr. 2011.
[12]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel,“Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, ” Sci., vol. 334, pp.629–634, Sep. 2011.
[13]J. Qiu, M. Guo and X. Wang, “Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells, ” ACS Appl. Mater. Interfaces, vol. 3, pp. 2358-2367, Jan. 2011.
[14]S. K. Balasingam, M. G. Kang, Y. Jun, “Metal substrate based electrodes for flexible dyesensitized solar cells: fabrication methods, progress and challenges,” Chem. Commun., vol. 49, pp. 11457-11475, May 2013.
[15]S. K. Balasingam, M. G. Kang and Y. Jun, “Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum,”Chem. Commun., vol. 49, pp. 1471-1487, Feb. 2013.
[16]I. N. Obotowo, I. B. Boot and U. J. Eka,“Organic sensitizers for dye sensitized solar cell(DSSC): properties from computation, progress and future perspectivites,”J. Mol. Struct., vol. 1122, pp. 80-87, Sep. 2016.
[17]J. C. Chou, C. H. Kuo, Y. H. Liao, C. H. Lai, P. H. You, C. C. Ko, Z. M. Yang and C. Y. Wu, “A barrier structure for photoelectrode of dye-sensitized solar cell for enhancing efficiency,” IEEE Photon. Technol. Lett., vol. 30, pp. 521-524, Feb. 2018.
[18]J. C. Chou, P. H. You, Y. H. Liao, C. H. Lai, C. M. Chu, Y. J. Lin, W. Y. Hsu, C. C. Li and Y. H. Nien , “Fabrication and photovoltaic properties of dye-sensitized solar cells based on graphene–TiO2 composite photoelectrode with ZnO nanowires view document,” IEEE Trans. Semiconduct., vol. 30, pp. 531-538, Aug. 2017.
[19]J. C. Chou, W. Y. Hsu, Y. H. Liao, C. H. Lai, Y. J. Lin, P. H. You, C. M. Chu, C. C. Lu and Y. H. Nien , “Photovoltaic analysis of platinum counter electrode modified by graphene oxide and magnetic beads for dye-sensitized solar cell,” IEEE Trans. Semiconduct., vol. 30, pp. 270-270, Jul. 2017.
[20]J. C. Chou, P. H. You, Y. H. Liao, C. H. Lai, C. M. Chu, Y. J. Lin, W. Y. Hsu, C. C. Li and Y. H. Nien , “An investigation on the photovoltaic properties of dye-sensitized solar cells based on Fe3O4-TiO2 composited photoelectrode,” IEEE J. Electron Devi., vol. 4, pp. 402-409, Oct. 2016.
[21]H. Chang, T. L. Chen, K. D. Huang, S. H. Chien, K. C. Hung, “Fabrication of highly efficient flexible dye-sensitized solar cells,” J. Alloy. Compd., vol. 504, pp. S435-S438, Jun. 2010.
[22]L. Y. Lin, C. P. Lee, R. Vittal, K. C. Ho, “Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode,” J. Power Sources, vol. 195, pp. 4344-4349, Oct. 2010.
[23]A.S. Shikon, Z. Ahmad, F. Touati, R. A. Shakoor, A. Shaheen and A. Muhtaseb, “Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques,” Ceram. Int., vol. 43, pp. 10540-10545, Jul. 2017.
[24]C. Wu, B. Chen, X. Zheng and S. Priya, “Scaling of the flexible dye sensitized solar cell module,” Sol. Energ. Mat. Sol. Cells, vol. 157, pp. 438-446, Mar. 2016.
[25]L. Lian, D. Dong, D. Feng and G. He, “Low roughness silver nanowire flexible transparent electrode by low temperature solution-processing for organic light emitting diodes,” Org. Electron., vol. 49, pp. 9-18, Nov. 2017.
[26]C. C. Lin, S. K. Tsai and M. Y. Chang, “Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells,” Org. Electron., vol. 46, pp. 218-225, Jun. 2017.
[27]S. Shi, M. Zhang, T. Deng, T. Wang and G. Yang, “A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries,” Electrochim. Acta, vol. 246, pp. 1004-1014, Dec. 2017.
[28]F. Xu, Y. Wu, X. Zhang, Z. Gao and K. Jiang, “Controllable synthesis of rutile TiO2 nanorod array, nanoflowers and microspheres directly on fluorine-doped tin oxide for dye-sensitised solar cells,” Micro Nano Lett., vol. 7, pp. 826–830, Aug. 2012.
[29]C. S. Lee, J. K. Kim, J. Y. Lim and J. H. Kim, “One-step process for the synthesis and deposition of anatase, two-dimensional, disk-shaped TiO2 for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces, vol. 6, pp. 20842–20850, Sep. 2014.
[30]J. Lin, Y. Peng and A. R. Pascoe, “A Bi-layer TiO2 photoanode for highly durable, flexible dye-sensitized solar cells,” J. Mater. Chem. A, vol. 3, pp. 4679–4686, Jan. 2015.
[31]M. Shanmugam, R. Jacobs-Gedrim, C. Durcan and B. Yu, “2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells,” Nanoscale, vol. 5, pp. 11275–11282, May 2013.
[32]G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto and A. A. Matsuda, “Nanoparticle-deposited TiO2 nanotube arrays for electrodes of dye-sensitized solar cells,” Nanoscale Res. Lett., vol. 10, pp. 1-6, Oct. 2015.
[33]Y. Kondo, H. Yoshikawa, K. Awaga , M. Murayama , T. Mori and Sunada K, “Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres,” Langmuir, vol. 24, pp. 547-550, Jul. 2008.
[34]P. Joshi, L. Zhang, D. Davoux, Z. Zhu, D. Galipeau and H. Fong, “Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency,” Energy Environ. Sci, vol. 3, pp. 1507-1510, Jul. 2010.
[35]X. Wang, J. Tian, C. Fei, L. Lv, Y. Wang and G. Cao, “Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells,” Rsc. Adv., vol. 5, pp. 8622-8629, Nov. 2015.
[36]C. Li, Y. Luo, X. Guo, D. Li, J. Mi and L. Sø, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem., vol. 196, pp. 504-510, Feb. 2012.
[37]V. Baglio, M. Girolamo, V. Antonucci and A. S. Arico, “Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells,” Int. J. Electrochem. Sci., vol. 6, pp. 3375-3384, Aug. 2011.
[38]M. S. Ahmad, A. K. Pandey, N. A. Rahim, “Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications a review,” Renew. Sust. Energ. Rev., vol. 77, pp.89-108, Feb. 2017.
[39]G. Redmond, D. Fitzmaurice and M. Graetzel, “Visible light sensitization by cis-bis (thiocyanato) bis (2, 2′-bipyridyl-4, 4′-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques,” Chem. Mater., vol. 6, pp.686-691, Sep. 1994.
[40]J. Z. Ou, R. A. Rani, M. H. Ham, M. R. Field, Y. Zhang and H. Zheng, “Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies,” Acs. Nano., vol. 6, pp. 4045-4053, May 2012.
[41]N. N. Dinh, M. C. Bernard, L. G. A. Hugot, T. Stergiopoulos and P. Falaras, “Photoelectrochemical solar cells based on SnO2 nanocrystalline films,” Comptes. Rendus. Chim., vol. 9, pp. 676-683, Sep. 2006.
[42]S. Gholamrezaei, M. S. Niasari, M. Dadkhah and B. Sarkhosh, “ New modified sol–gel method for preparation SrTiO3 nanostructures and their application in dye-sensitized solar cells,” J. Mater. Sci: Mater. Electron, vol. 27, pp. 118-125, Sep. 2016.
[43]K. Hara, Z. G. Zhao, Y. Cui, M. Miyauchi, M. Miyashita and S. Mori , “ Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells,” Langmuir, vol. 27, pp. 12730-12736, Apr. 2011.
[44]B. Tan, E. Toman, Y. Li and Y. Wu, “Zinc stannate (Zn2SnO4) dye-sensitized solar cells,” J. Am. Chem. Soc., vol. 129, pp. 4162-4163, Jun. 2007.
[45]S. Mathew, A. Yella, P. Gao, B. P. Humphry, B. F. Curchod and N. A. Ashari, “Dye-sensitized solar cells with 13% efficiency achieved through the molecule engineering of porphyrin sensitizers,” Nat. Chem., vol. 6, pp. 242-247, Dec. 2014.
[46]K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. I. Fujisawa and M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes,” Chem. Commun., vol. 51, pp. 15894-15897, Nov. 2015.
[47]H. Qin, S. Wenger, M. Xu, F. Gao, X. Jing and P. Wang, “ An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells,” J. Am. Chem. Soc., vol. 103, pp. 9202-9203, Jul. 2008.
[48]S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo and A. Hagfeldt, “ Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye- sensitized solar cells,” J. Am. Chem. Soc., vol. 132, pp. 16714-16724, Jun. 2010.
[49]J. N. Clifford, M. Planells and E. Palomares, “Advances in high efficiency dye sensitized solar cells based on Ru(II) free sensitizers and a liquid redox electrolyte,” J. Mater. Chem., vol. 22, pp. 24195-24201, Aug. 2012.
[50]N.K. Ibrayex, E. V. Seliverstova, A. A. Ishchenko and M. A. Kudinova, “ The effect of sulfonate groups on spectral-luminescent and photovoltaic properties of squarylium dyes,” J. Photochem. Photobiol. A: Chem., vol. 346, pp. 570-575, Feb. 2017.
[51]M. Grishina, O. Bolshakov, A. Potemkin and V. Potemkin, “ Benzo[1,2,5] thiadiazole dyes: Spectral and electrochemical properties and their relation to the photovoltaic characteristics of the dye-sensitized solar cells,” Dyes Pigments, vol.144, pp. 80-93, Feb. 2017.
[52]S. B. Novir and S. M. Hashemianzadeh, “Quantum chemical investigation of structural and electronic properties of trans- and cis-structures of some azo dyes for dye-sensitized solar cells,” Comput. Theor. Chem., vol. 1102, pp. 87-97, Sep. 2017.
[53]M. Grätzel, “ Conversion of sunlight to electric power by nanocrystalline dye- sensitized solar cells,” J. Photochem. Photobiol. A, vol. 164, p. 3-14, Oct. 2004.
[54]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “ Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc., vol. 127, pp. 16835-16847, Jul. 2005.
[55]M. K. Nazeeruddin, A. Kay, I. Rodicio, B. R. Humpbry, E. Miiller, P. Liska, N. Vlachopoulos and M. Grätzel, “ Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'- dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc., vol. 115, pp. 6382-6390, 1993.
[56]M. K. Nazeeruddin, S. M. Zakeeruddin, B. R. Humphry, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, “ Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc., vol. 123, pp. 1613-1624, Aug. 2001.
[57]J. Xia, F. Li, C. Huang, J. Zhai and L. Jiang, “ Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 944-952, Sep. 2006.
[58]B. Li, L. Wang, B. Kang, P. Wang and Y. Qiu, “ Review of recent progress in solid-state dyesensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 549-573, Apr. 2006.
[59]M. Biancardo, K. West and F. C. Krebs, “Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT: PSS counter electrodes applied to gel electrolyte assemblies,” J. Photochem. Photobiol. A: Chem., vol. 187, pp. 395-401, Mar. 2007.
[60]P. Li, Y. Zhang, W. Fa, X. Yang and L. Wang, “ Hollow platinum alloy tailored counter electrodes for photovoltaic applications,” J. Power Sources, vol. 360, pp.323-242, Mar. 2017.
[61]S. S. Nemala, P. Kartikay, S. Prathapani, H. L. M. Bohm, P. Bhargava, S. Bohm and S. Mallick,“ Liquid phase high shear exfoliated graphene nanoplatelets as counter electrode material for dye-sensitized solar cells,” J. Colloid Interface Sci., vol. 499, pp. 9-16, Jun. 2017.
[62]R. Kumar, S. S. Nemuala, S. Mallick and R. Bhargava, “ Synthesis and characterization of carbon based counter electrode for dye sensitized solar cells (DSSCs) using sugar free as a carbon material,” Sol. Energy, vol. 144, pp. 215-220, Nov. 2017.
[63]S. Hussain, S. F. Shaikh, D. Vikraman, R. S. Mane, O. S. Joo, M. Naushad and J. Jung, “High-performance platinum-free dye-sensitized solar cells with molybdenum disulfide films as counter electrodes,” ChemPhysChem, vol. 16, pp. 3959-3965, Dec. 2015.
[64]I. A. Sahito, K. C. Sun, A. A. Arbab, M. B. Qadir, S. H. Jeong, “Graphene coated cotton fabric as textile structured counter electrode for DSSC,” Electrochim. Acta., vol. 173, pp. 164-171, Aug. 2017.
[65]B. O. Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloial TiO2 films,” Nature, vol. 353, pp. 737-740, Apr. 1991.
[66]C. J. M. Chin, T. Y. Chen, M. Lee, C. F. Chang, Y. T. Liu and Y. T. Kuo, “ Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass,” J. Hasard. Mater., vol. 277, pp. 110-119, Sep. 2014.
[67]M. M. Byranvand, A. N. Kharat, A. Badiei and M. Bazargana, “ Electron transfer in dye- sensitized solar cells,” J. Optoelectron. Biomed. Mater., vol. 4, pp. 49-57, Dec. 2012.
[68]S. Haque, E. Palomares, B. M. Cho, A. M. Green, N. Hirata, K. R. Klug and J. R. Durrant, “Charge separation versus recombination in dye-Sensitized nanocrystalline solar cells : the minimization of kinetic redundancy,” J. Am. Chem. Soc., vol. 127, pp. 3456-3462, Mar. 2005.
[69]N. A. Anderson and T. Lian, “ Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films,” Coord. Chem. Rev.,vol. 248, pp. 1231-1246, Feb. 2004.
[70]Y.M. Lin, A. Valdes–Garcia, S.J. Han, D.B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris and K.A. Jenkins, “Wafer-scale graphene integrated circuit, ” Science, vol.332, pp.1294-1297, Aug. 2011.
[71]J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, “One-dimensional, twodimensional and three-dimensional nanostructured materials for advanced electrochemical energydevices,” Prog. Mater. Sci., vol. 57,pp.724-803, Apr. 2012.
[72]P. Dubey, A. Kumar, R. Prakash, “Non-covalent functionalization of graphene oxide by polyindole and subsequent incorporation of Ag nanoparticles for electrochemical applications,” Appl. Surf. Sci., vol.355, pp.262-267, Sep. 2015.
[73]C. Hu, G. Zheng, F. Zhao, H. Shao, Z. Zhang, N. Chen, L. Jiang, L. Qu, “A powerful approach to functional graphene hybrids for high performance energy–related applications,” Energy Environ. Sci., vol.7, pp.3699-3708, Aug. 2014.
[74]S.M. Jung, D.L. Mafra, C.T. Lin, H.Y. Jung, J. Kong, “Controlled porous structures of graphene aerogels and their effect on supercapacitor performance,” Nanoscale, vol.7, pp.4386-4393, Dec. 2015.
[75]T.H. Kim, S. Shah, L. Yang, P.T. Yin, M.K. Hossain, B. Conley, J.W. Choi, K.B. Lee, “Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid–pattern arrays,” ACS Nano, vol.9, pp.3780-3790, Jan. 2015.
[76]http://graphenewholesale.com/what-is-graphene/
[77]https://investorintel.com/market-analysis/market-analysis-intel/understanding-graphene-part-6-graphene-oxide/
[78]https://www.graphenea.com/products/reduced-graphene-oxide-1-gram
[79]M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, “Graphene-based ultracapacitors,” Nano Letters, vol. 8, pp. 3498-3502, Oct. 2008.
[80]C. Y. Ho, C. C. Liang, H. W. Wang, “Investigation of low thermal reduction of graphene oxide for dye-sensitized solar cell counter electrode,” Colloids Surf. A, vol. 481, pp. 222-228, Oct. 2015.
[81]L. Ling, X. Tao, S. Zhongxizo, L. Chunliang, and M. Fei. “Effect of sputtering pressure on surface roughness, oxygen vacancy and electrical properties of a-IGZO thin films,”Rare Metal Mat. Eng., vol.45, pp. 1992-1996, Aug. 2016.
[82]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488–492, Mar. 2004.
[83]C. H. Wu, K. M. Chang, S. H. Huang, I. C. Deng, C. J. Wu, W. H. Chiang, C. C. Chang,“Characteristics of IGZO TFT prepared by atmospheric pressure plasma jet using PE-ALD Al2O3 gate dielectric,” IEEE Electron Device Lett., vol. 33, pp. 552-554, May 2012.
[84]A. Suresh, P. Gollakot, P. Wellenius, A. Dhawan and J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD,” Thin Solid Films, vol. 516, pp. 1326-1329, Feb. 2008.
[85]C. H. Wu, F. C. Yang, W. C. Chen and C. L. Chang, “Influence of oxygen/argon reaction gas retio on optical and electrical characteristics of amorphous IGZO thin films coated by hipims process,” Surf. Coat. Tech., vol. 303, pp. 209-214, Jun. 2016.
[86]H. Yabuta, M Sano, K Abe, T Aiba, T. Den and H. Kumomi, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature RF-magnetron sputtering,” Appl. Phys. Lett., vol. 89, pp. 112123-1-112123-3, Apr. 2006.
[87]P. Heremans, A. K. Tripathi, A. J. Meux, E. C. P. Smits, B. Hou, G. Pourtois and G. H. Gelinck, “ Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications,” Adv. Mater., vol. 28, pp. 4266-4282, Apr. 2016.
[88]http://archive.eetasia.com/www.eetasia.com/ART_8800668322_480700_NT_67c4e775.HTM
[89]Y. S. Rim, H. Chen, B. Zhu, S. H. Bae, S. Zhu, P. J. Li, I. C. Wang and Y. Yang, “Interface engineering of metal oxide semiconductors for biosensing applications,” Adv. Mater. Interfaces, vol. 289, pp. 1700020-1700042, Dec. 2017.
[90]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488-492, May 2004.
[91]Y. S. Rim, Y. Yang, S. H. Bae, H. J. Chen, C. Li, M. S. Goorsky and Y. Yang, “ Ultrahigh and broad spectral photodetectivity of an organic–inorganic hybrid phototransistor for flexible electronics,” Adv. Mater., vol. 27, pp. 6685-6891, Jul. 2015.
[92]M. H. Kim, M. J. Choi, K. Kimura, H. Kobayashi and D. K. Choi, “Improvement of the positive bias stability of a-IGZO TFTs by the HCN treatment,” Solid State Electron., vol. 126, pp. 87-91, Sep. 2016.
[93]S. L. Zhan, M. Zhao, D. M. Zhuang, E. G. Fu, M. J. Cao, L. Guo and L. Q. Ouyang, “The influence of nitrogen implantation on the electrical properties of amorphous IGZO,” Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 406, pp. 596-599, Jan. 2017.
[94]S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Grazel and A. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, vol. 101, pp.2576-2582, Aug. 1997.
[95]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, “Conversion of light to electricity by cis −X2Bis (2,2D-bipyridyl-4,4D-dicarboxylate) ruthenium(II)charge-transfer sensitizers (X = C1−,Br−, I−,CN−, andSCN−) on nanocrystalline TiO2 electrodes,” J. Phys. Chem. Soc., vol. 115, pp. 6382-6390, Dec. 1993.
[96]T. L. Bahers, F. Labat, T. Pauporte and I. Ciofini, “Effect of solvent and additives on the open-circuit voltage of ZnO-based dye-sensitized solar cells: a combined theoretical and experimental study,” Phys. Chem. Chem. Phys., vol. 12, pp. 14710-14719, Nov. 2010.
[97]https://www.ricoh.com/technology/tech/066_dssc.html
[98]S. Fiechter, P. Bogdanoff, T. Bak, and J. Nowotny, “Basic concepts of photoelectrochemical solar energy conversion systems,” Adv. Appl. Ceram., vol. 111, pp. 39–43, May 2012.
[99]C. J. Wood, G. H. Summers, and E. A. Gibson, “Increased photocurrent in a tandem dye-sensitized solar cell bymodifications in push–pull dye-design,” Chem. Commun., vol. 51, pp. 3915–3918, Jun. 2015.
[100]A. Nattestad, A. J.Mozer,M. K. R. Fischer et al., “Highly efficient photocathodes for dye-sensitized tandem solar cells,” Nature Mater., vol. 9, pp. 31–35, Sep. 2010.
[101]A. Nakasa, H. Usami, S. Sumikura, S. Hasegawa, T. Koyama, and E. Suzuki, “A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode,” Chem. Lett., vol. 34, pp. 500–501, Mar. 2005.
[102]J. Qian, K.-J. Jiang, J.-H. Huang, Q. S. Liu, L.-M. Yang, and Y. Song, “A selenium-based cathode for a high-voltage tandem photoelectrochemical solar cell,” Angew. Chem. Int. Ed., vol. 51, pp. 10351–10354, Aug. 2012.
[103]S. Powar, R. Bhargava, T. Daeneke et al., “Thiolate/disulfide based electrolytes for p-type and tandem dye-sensitized solar cells,” Electrochim. Acta, vol. 182, pp. 458–463, Jul. 2015.
[104]https://ares.jsc.nasa.gov/research/laboratories/sem.html
[105]http://www.eaglabs.com.tw/sem.html
[106]https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
[107]http://www.eaglabs.com.tw/eds.html
[108]http://www.eaglabs.com.tw/xps-esca.html
[109]http://www.thermo.com.cn/article6421.html
[110]http://www.eag.com/auger-electron-spectroscopy/
[111]https://www1.udel.edu/pchem/C444/info/AES_XPS.pdf
[112]http://www.ocivm.com/_auger_electron_spectroscopy.html
[113]https://www.slideshare.net/HIADERY/principle-applications-of-transmission-electron-microscopy-tem-high-resolution-tem
[114]http://www.hk-phy.org/atomic_world/tem/tem02_e.html
[115]https://medicine.utoronto.ca/research/transmission-electron-microscopy-tem
[116]https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/uv-vis/spectrum.htm
[117]N. S. Das, P. K. Ghosh, M. K. Mitra, K. K. Chattopadhyay, “Effect of film thickness on the energy band gap of nanocrystalline Cds thin films analyzed by spectroscopic ellipometry,” Physica E, vol. 42, pp. 2097-2102,2010.
[118]S. K. J. Al-Ani, I. H. O. Al-Hassany, Z. T. Al-Dahana, “The optical properties and a.c. conductivity of magnesium phosphate glasses,” J. Mater. Sci., vol. 30, pp. 3720-3729, 1995.
[119]http://labomedinc.com/labomed-spectrophotometer.html

[120]B. Y. Chang and S. M. Park,” Electrochemical impedance spectroscopy, “ Ann. Rev. Anal. Chem., vol. 3, pp. 207-229, Jul. 2010.
[121]J. E. B. Randles, “Kinetics of rapid electrode reactions,” Discuss. Faraday Soc., vol. 1, pp. 11-19, Oct. 1947.
[122]C. D. Chou, “Studies on Dye-sensitized TiO2 solar cell based on porphyrin and phthalocyanine, “National Taiwan University of Science and Technology, Department of Chemical Engineering, master's thesis,2006 (周啟達,“以紫質及酞花青敏化之二氧化鈦染料敏化太陽能電池研究”,國立臺灣科技大學化學工程系,碩士論文,2006。)
[123]K. S. Loh, Y. H. Lee, A. Musa, A. A. Salmah, I. Zamri, “Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid,” Sens., vol. 8, pp. 5775-5791, Dec. 2008.
[124]J. Bisquert, “Theory of the impedance of electron diffusion and recombination in a thin layer,” J. Phys. Chem. B., vol. 106, pp. 325-333, Apr. 2002.
[125]J. C. Chou, C. H. Huang, Y. H. Liao, S. W. Chuang, L. H. Tai, Y. H. Nien, “Effect of different grapheme oxide contents on dye-sensitized solar cells,” IEEE J. Photovolt., vol. 5, pp.1106-1112, Feb. 2015.
[126]X. Luan, L. Chen, J. Zhang, G. Qc, J. Flake and Y. Wang, “Electrophoretic deposition of reduced grapheme oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells,” Electrochim. Acta., vol. 111, pp.216-222, Jun. 2013.
[127]B. Tripathi, P. Yadav, M. Kumar, “Chare transfer and recombination kinetics in dye-sensitized solar cell using static and dynamic electrical characterization techniques,” Sol. Energy, vol. 108, pp. 107-116, Jul. 2014.
[128]C. P. Hsu, K. M. Lee, J. T. W. Huang, C. Y. Lin, C. H. Lee, L. P. Wang, S. Y. Tsai and K. C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta., vol. 53, pp. 7514-7522, 2008.
[129]S. Z. Siddick, C. W. Lai, J. C. Juan and S. B. Hamid, “Reduced graphene oxide–titania nanocomposite film for improving dye-sensitized solar cell (DSSCs) performance,” Curr. Nanosci, vol. 13, pp. 494-500, Aug. 2017.
[130]R. Ramamoorthy, K. Karthika, A. M. Dayana, G. Maheswari, V. Eswaramoorthi, N. Pavithra, S. Anandan and R. V. Williams, “Reduced graphene oxide embedded titanium dioxide nanocomposite as novel photoanode material in natural dye-sensitized solar cells,” ‎J. Mater. Sci. Mater. Electron, vol. 28, pp. 13678-13689, Sep. 2017.
[131]H. Zhang, Y. Lv, C. Yang, H. Chen and X. Zhou, “One-Step Hydrothermal Fabrication of TiO2/reduced graphene oxide for high-efficiency dye-sensitized solar cells,” J. Electron. Mater., vol. 47, pp. 1630-1637, Dec. 2017.
[132]J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang and L. Jiang, “Hierarchically ordered macro mesoporous TiO2 graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities,”ACS Nano, vol. 5, pp. 590-596, Feb. 2011.
[133]X. Fang, M. Li, K. Guo, X. Liu, Y. Zhu, B. Sebo, X. Zhao, “Graphene-compositing optimization of the properties of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 101, pp. 176-181, Sep. 2014.
[134]H. Cai, J. Li, X. Xu, H. Tang, J. Luo, K. Binnemans, J. Fransaer and D. E. D. Vos, “Nanostructured composites of one-dimensional TiO2 and reduced graphene oxide for efficient dye-sensitized solar cells,” J. Alloys Compd., vol. 697, pp. 132-137, May 2017.
[135]A. Carissa, M.S. Esteban and E.P. Enriquez, “Graphene-anthocyanin mixture as photosensitizer for dye-sensitized solar cell,” Sol. Energy, vol. 98, pp.392-399, Jan. 2013.
[136]M. Souibgui, H. Ajlani, A. Cavanna, M. Oueslati, A. Meftah and A. Madouri, “Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride,”Superlattices Microstruct., Superlattice. Microst., vol.112, pp. 394-403, Mar. 2017.
[137]I. Po ́csik , M. Hundhausen, M. Koo ́s, L. Ley,“ Origin of the D peak in the Raman spectrum of microcrystalline graphite,” J. Non-Cryst. Solids, vol. 227, pp. 1083-1086, Nov. 1998.
[138]Y. Xie, X. Zhou, H. Mi, J. Ma, J. Yang and J. Cheng, “High efficiency ZnO-based dye-sensitized solar cells with a 1H,1H,2H,2H-perfluorodecyltriethoxysilane chain barrier for cutting on interfacial recombination,” Appl. Surf. Sci., vol. 434, pp. 1144-1152, May 2018.
[139]H. Seo, M. K. Son, S. Park, M. Jeong, H. J. Kim, G. Uchida, N. Itagaki, K. Koga, M. Shiratani, “Electrochemical impedance analysis on the additional layers for the enhancement on the performance of dye-sensitized solar cell,” Thin Solid Films, vol. 554, pp. 122-126, Mar. 2014.
[140]C. P. Hsu, K. M. Lee, J. T. W. Huang, C. Y. Lin, C. H. Lee, L. P. Wang, S. Y. Tsai and K. C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta., vol. 53, pp. 7514-7522, Feb. 2008.
[141]A. Sacco, “Electrochemical impedance spectroscopy: fundamentals and application in dye-sensitized solar cells,” Renew. Sust. Energ. Rev., vol. 79, pp. 814-829, Jul. 2017.
[142]Q. Wang, J. E. Moser and M. Gra1tzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B, vol. 109, pp. 14945-14953, Jun. 2005.
[143]G. Xiong, R. Shao, T. C. Droubay, A. G. Joly, K. M. Beck, S. A. Chambers and W. P. Hess, “Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals,” Adv. Funct. Mater., vol. 17, pp. 2133-2138, Nov. 2007.
[144]R. W. Hewitt and N. Winograd, “Oxidation of polycrystalline indium studied by X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy,” J. Appl. Phys., vol.51, pp.2620-2624, Aug. 1980.
[145]S. C. Ghosh, “X-ray photoelectron spectroscopic study o the formation of catalytic gold nanoparticles on ultraviolet-ozone oxidized GaAs(100) substrates,” J. Appl. Phys., vol.101, pp. 114322-114330, Nov. 2007.
[146]M. C. Biesinger, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci., vol.257, pp. 887-898, Oct. 2010.
[147]C. C. Lin, Y. P. Chang, H. B. Lin and C. H. Lin, “Effect of non-lattice oxygen on ZrO2 based resistive switching memory,” Nanoscale Res. Lett., vol. 7, pp.187-193, Dec. 2012.
[148]L. Hsu and E. Y. Wang, “Photovoltaic properties of In2O3/semiconductor heterojunction solar cells,” 13th Photovoltaic Specialists Conference, pp. 536–540, Dec. 1978.
[149]E. F. Archibong and E. N. Mvula, “Structure and electron detachment energies of Ga2O3 and Ga3O2,” Chem. Phys. Lett., vol. 408, pp. 371, Nov. 2005.
[150]S. Gowtham, M. Deshapande, A. Costales and R. Pandey, “Structural energetic, electronic, bonding, and vibrational properties of Ga3O, Ga3O2, Ga3O3, Ga2O3, and GaO3 clusters,” J. Phys. Chem.B, vol. 109, pp. 14836, Feb. 2005.
[151]K. Jacobi, A. Zwicker and A. Gutmann, “Work function, electron affinity and band bending of zinc oxide surface,” Surf. Sci., vol.141, pp. 109, Jun. 1984.
[152]N. S. Das, P. K. Ghosh, M. K. Mitra, K. K. Chattopadhyay, “Effect of film thickness on the energy band gap of nanocrystalline Cds thin films analyzed by spectroscopic ellipometry,” Physica E, vol. 42, pp. 2097-2102, Feb. 2010.
[153]S. K. J. Al-Ani, I. H. O. Al-Hassany, Z. T. Al-Dahana, “The optical properties and a.c. conductivity of magnesium phosphate glasses,” J. Mater. Sci., vol. 30, pp. 3720-3729, Oct. 1995.
[154]O. Cheshnivsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu and R. E. Smalley, “Ultraviolet photoelectron spectroscopy of semiconductor clusters silicon and germanium,” Chem. Phys. Lett., vol. 138, pp. 119-124, Jul. 1987.
[155]H. Cai, J. Li, X. Xu, H. Tang, J Luo, K. Binnenans. J. Fransaer and D. D. Vos, “Nanostructured composites of one-dimensional TiO2 and reduced graphene-oxide for efficient dye-sensitized solar cells,” J. Alloys Compd., vol. 697, pp. 132-137, Mar. 2017.
[156]H. R. Lv, X. W. Yuan H. J. Lv and C. Cui, “Reduced graphene oxide modified TiO2 nanoparticles composites for improved performance of dye-sensitized solar cells,” Adv, Eng. Res., vol. 110 pp. 191-195, Apr. 2017.
[157]N. T. R. N. Kumara, A. L. Tan, A. H. Mirza, R.L.N. Chandrakanthi, “Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells”, J. Alloys Compd., vol. 581, pp. 186–191, Nov. 2013
[158]H. Seo, M. K. Son, J. K. Ki, S. Choi, S. K. Kim, H. J. Kim, “Analysis of current loss from a series-parallel combination of dye-sensitized solar cells using electrochemical impedance spectroscopy,” Photonics Nanostruct., vol. 10. pp. 568-274, Jul. 2014.
[159]T. C. Wei, J. L. Lan, C. C. Wan, W. C. Hsu and Y. H. Chang, “Fabrication of grid type dye sensitized solar modules with 7% conversion efficiency by utilizing commercially available materials, ” Prog. Photovolt: Res. Appl., vol. 21, PP. 1625-1633 , May 2012.
[160]S. Casaluci, M. Gemmi, V. Pellegrin, A. D. Cario and F. Bonaccorso, “Graphene-based large area dye-sensitized solar cell module, ” Nanoscale, vol. 8, pp. 5368-5378, Jun. 2013.
[161]P. Salvador, M. G. Hidalgo, A. Zaban and J. Bisquert, “Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells,” J. Phys. Chem. B, vol. 109, pp. 15915-15926, Jul. 2005.
[162]J. L. Lan, T. C. Wei, S. P. Feng, C. C. Wan and G. Cao, “Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities,” J. Phys. Chem. C, vol. 116, pp. 25727-25733, Nov. 2012.
[163]M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Gratzel and A. Hagfeldt, “Dye-sensitized solar cells for efficient power generation under ambient lighting,” Nature Photon., vol.11, pp. 372-378, May 2018.
[164]A. Pal, A. Jana, S. Bhattacharya and J. Datta, “SPR effect of AgNPs decorated TiO2 in DSSC using TPMPI in the electrolyte: approach towards low light trapping,” Electrochim. Acta., vol. 243, pp. 33-43, May 2017.
[165]H. S. Hafez, S. S. Shenouda and M. Fadel, “Photovoltaic characteristics of natural light harvesting dye sensitized solar cells,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 192, pp. 23-26, Nov. 2018.
[166]P. Zhai, H. Lee, Y. T. Huang, T. C. Wei and S. P. Peng, “Study on the blocking effect of a quantum-dot TiO2 compact layer in dye sensitized solar cells with ionic liquid electrolyte under low intensity illumination,” J. Power Sources., vol. 329, pp. 502-509, Aug. 2016.
[167]https://www.teamviewer.com/zhtw/download/windows/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以紫質及酞花青敏化之二氧化鈦染料敏化太陽能電池研究
2. 以金銀奈米粒子修飾染料敏化太陽能電池光電極之研究
3. 以ZrO2 摻雜 TiO2奈米複合纖維修飾染料敏化太陽能電池的光電特性及其阻抗分析
4. 探討以還原氧化石墨烯修飾鉑對電極設計AZO 光陽極串並聯染料敏化太陽能電池模組於低照度之 光伏量測、等效電路之阻抗分析與應用
5. 維生素C還原法製備還原氧化石墨烯混合 二氧化鈦聚集體之染料敏化太陽能電池光電極
6. 研製以AZO/IGZO透明導電薄膜製成染敏太陽能電池於低照度、串並聯模組之光電特性與阻抗分析
7. 合成含電子匱乏之單,雙錨基有機染料及其染料敏化太陽能電池之探討
8. 共軛高分子摻雜白金作為染料敏化太陽能電池對電極之光電和電化學特性探討
9. 研製以黑磷烯修飾二氧化鈦光電極與銀修飾鉑對電極於低照度之染料敏化太陽能電池
10. 鉑點綴石墨烯對電極染料敏化太陽能電池:大氣電漿與爐管製程之比較研究
11. 探討以石墨烯與磁珠修飾陣列型氧化鋅/二氧化鈦大面積染料敏化太陽能電池之等效電路分析及無線遠端即時監控系統之研究
12. 直接甲醇燃料電池與染料敏化太陽能電池電極奈米結構與穩定性之研究
13. 還原氧化石墨烯材料應用於染料敏化太陽能電池之研究
14. 金修飾釕鉑核殼奈米觸媒應用於染料敏化太陽能電池之研究
15. 金屬氧化物薄膜電晶體之特性研究與光電元件開發
 
無相關期刊
 
1. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型 TiO2 (NiO)葡萄糖與尿素感測器之感測特性、穩定性及即時感測系統之量測
2. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型IGZO/Al抗壞血酸生醫感測器特性、等效電路及即時感測系統之量測
3. 探討以石墨烯與磁珠整合氧化鋅奈米線修飾 可撓式陣列型二氧化鈦染料敏化太陽能電池於低照度 之光電特性與大面積串並聯等效電路的阻抗分析
4. 探討以還原氧化石墨烯修飾鉑對電極設計AZO 光陽極串並聯染料敏化太陽能電池模組於低照度之 光伏量測、等效電路之阻抗分析與應用
5. 以微流體架構研究差動對參考電極整合磁珠與氧化石墨烯修飾可撓式陣列型AZO與ZnO葡萄糖與抗壞血酸生醫感測器特性、等效電路之阻抗分析與讀出電路之設計
6. 以微流體架構探討磁珠與石墨烯修飾可撓式陣列型氧化鎳葡萄糖與乳酸感測器之穩定性、干擾性、阻抗分析及即時感測系統之量測
7. 以微流體架構研究差動對參考電極整合磁珠與石墨烯修飾陣列型可撓式IGZO葡萄糖感測器與多功能酵素即時感測系統之研製
8. 探討以石墨烯與磁珠修飾陣列型氧化鋅/二氧化鈦大面積染料敏化太陽能電池之等效電路分析及無線遠端即時監控系統之研究
9. 設計可撓式以還原氧化石墨烯與磁珠修飾二氧化鈦光陽極 染敏太陽能電池模組於低照度之光伏量測與等效電路分析
10. 以石墨烯修飾磁珠與微流體架構研製差動對參考電極整合於陣列型可撓式葡萄糖生醫感測系統之量測與阻抗分析
11. 以石墨烯修飾之陣列型染料敏化太陽能電池的 光電特性與阻抗分析
12. 研製以AZO/IGZO透明導電薄膜製成染敏太陽能電池於低照度、串並聯模組之光電特性與阻抗分析
13. 以LabVIEW設計實現具數據融合之量測系統應用於可撓式陣列型酸鹼感測器與葡萄糖生醫感測器
14. 建築物設施與設備維護決策支援系統之研究
15. 溶膠凝膠濃度與退火條件對於氧化鋅錫薄膜電晶體之特性影響研究