References
[1]B. Li, L. Wang, B. Kang, Y. Qiu, “Review of recent progress in solid-state dyesensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 549-573, Jul. 2006.
[2]Y. Jiang, J. Xu, Y. Sun, C. Wei, J. Wang, D. Ke, X. Li, J. Yang, X. Peng, B. Tang, “Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system,” Applied Energy, vol. 190, pp. 1126-1137, Jan. 2017.
[3]V. Chilkoti, T. Bolisetti, R. Balachandar, “Climate change impact assessment on hydropower generation using multi-model climate ensemble,” Renew. Energ., vol. 109, pp. 510-517, Apr. 2017.
[4]D. Tonini, C. Vadenbo, T. F. Astrup, “Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective,” Energy, vol. 124, pp. 295-309, Aug. 2017.
[5]S. S. Martin, A. Chebak, “Concept of educational renewable energy laboratory integrating wind, solar and biodiesel energies,” Int. J. Hydrogen Energy, vol. 41, pp. 21036-21046, Jun. 2016.
[6]R. Donaldson, E. Lord, “Challenges for the implementation of the renewable heat incentive - an example from a school refurbishment geothermal scheme,” Sustainable Energy Technologies and Assessments, vol. 7, pp. 30-33, Sep. 2014.
[7]http://blog.chinahcpv.com/
[8]A.Pandey ,V. Tyagi , A. Jeyraj , L. Selvaraj, N. Rahim, S. Tyagi, “Recent advances in solar photovoltaic systems for emerging trends and advanced applications,” Renew. Sustain. Energy Rev., vol. 53, pp. 859-884, Nov. 2016.
[9]M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables version 49,” Prog. Photovolt., vol. 25, pp. 3-13, Nov. 2016.
[10]H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye-sensitized zinc oxide: aqueous electrolyte: platinum photocell,” Nature, vol. 261, pp. 402-403, Dec. 1976.
[11]M. K. Nazeeruddin, E. Baranoff, M. Grätzel, “Dye-sensitized solar cells: a brief overview,” Sol. Energy, vol.85, pp.1172– 1178, Apr. 2011.
[12]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel,“Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, ” Sci., vol. 334, pp.629–634, Sep. 2011.
[13]J. Qiu, M. Guo and X. Wang, “Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells, ” ACS Appl. Mater. Interfaces, vol. 3, pp. 2358-2367, Jan. 2011.
[14]S. K. Balasingam, M. G. Kang, Y. Jun, “Metal substrate based electrodes for flexible dyesensitized solar cells: fabrication methods, progress and challenges,” Chem. Commun., vol. 49, pp. 11457-11475, May 2013.
[15]S. K. Balasingam, M. G. Kang and Y. Jun, “Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum,”Chem. Commun., vol. 49, pp. 1471-1487, Feb. 2013.
[16]I. N. Obotowo, I. B. Boot and U. J. Eka,“Organic sensitizers for dye sensitized solar cell(DSSC): properties from computation, progress and future perspectivites,”J. Mol. Struct., vol. 1122, pp. 80-87, Sep. 2016.
[17]J. C. Chou, C. H. Kuo, Y. H. Liao, C. H. Lai, P. H. You, C. C. Ko, Z. M. Yang and C. Y. Wu, “A barrier structure for photoelectrode of dye-sensitized solar cell for enhancing efficiency,” IEEE Photon. Technol. Lett., vol. 30, pp. 521-524, Feb. 2018.
[18]J. C. Chou, P. H. You, Y. H. Liao, C. H. Lai, C. M. Chu, Y. J. Lin, W. Y. Hsu, C. C. Li and Y. H. Nien , “Fabrication and photovoltaic properties of dye-sensitized solar cells based on graphene–TiO2 composite photoelectrode with ZnO nanowires view document,” IEEE Trans. Semiconduct., vol. 30, pp. 531-538, Aug. 2017.
[19]J. C. Chou, W. Y. Hsu, Y. H. Liao, C. H. Lai, Y. J. Lin, P. H. You, C. M. Chu, C. C. Lu and Y. H. Nien , “Photovoltaic analysis of platinum counter electrode modified by graphene oxide and magnetic beads for dye-sensitized solar cell,” IEEE Trans. Semiconduct., vol. 30, pp. 270-270, Jul. 2017.
[20]J. C. Chou, P. H. You, Y. H. Liao, C. H. Lai, C. M. Chu, Y. J. Lin, W. Y. Hsu, C. C. Li and Y. H. Nien , “An investigation on the photovoltaic properties of dye-sensitized solar cells based on Fe3O4-TiO2 composited photoelectrode,” IEEE J. Electron Devi., vol. 4, pp. 402-409, Oct. 2016.
[21]H. Chang, T. L. Chen, K. D. Huang, S. H. Chien, K. C. Hung, “Fabrication of highly efficient flexible dye-sensitized solar cells,” J. Alloy. Compd., vol. 504, pp. S435-S438, Jun. 2010.
[22]L. Y. Lin, C. P. Lee, R. Vittal, K. C. Ho, “Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode,” J. Power Sources, vol. 195, pp. 4344-4349, Oct. 2010.
[23]A.S. Shikon, Z. Ahmad, F. Touati, R. A. Shakoor, A. Shaheen and A. Muhtaseb, “Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques,” Ceram. Int., vol. 43, pp. 10540-10545, Jul. 2017.
[24]C. Wu, B. Chen, X. Zheng and S. Priya, “Scaling of the flexible dye sensitized solar cell module,” Sol. Energ. Mat. Sol. Cells, vol. 157, pp. 438-446, Mar. 2016.
[25]L. Lian, D. Dong, D. Feng and G. He, “Low roughness silver nanowire flexible transparent electrode by low temperature solution-processing for organic light emitting diodes,” Org. Electron., vol. 49, pp. 9-18, Nov. 2017.
[26]C. C. Lin, S. K. Tsai and M. Y. Chang, “Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells,” Org. Electron., vol. 46, pp. 218-225, Jun. 2017.
[27]S. Shi, M. Zhang, T. Deng, T. Wang and G. Yang, “A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries,” Electrochim. Acta, vol. 246, pp. 1004-1014, Dec. 2017.
[28]F. Xu, Y. Wu, X. Zhang, Z. Gao and K. Jiang, “Controllable synthesis of rutile TiO2 nanorod array, nanoflowers and microspheres directly on fluorine-doped tin oxide for dye-sensitised solar cells,” Micro Nano Lett., vol. 7, pp. 826–830, Aug. 2012.
[29]C. S. Lee, J. K. Kim, J. Y. Lim and J. H. Kim, “One-step process for the synthesis and deposition of anatase, two-dimensional, disk-shaped TiO2 for dye-sensitized solar cells,” ACS Appl. Mater. Interfaces, vol. 6, pp. 20842–20850, Sep. 2014.
[30]J. Lin, Y. Peng and A. R. Pascoe, “A Bi-layer TiO2 photoanode for highly durable, flexible dye-sensitized solar cells,” J. Mater. Chem. A, vol. 3, pp. 4679–4686, Jan. 2015.
[31]M. Shanmugam, R. Jacobs-Gedrim, C. Durcan and B. Yu, “2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells,” Nanoscale, vol. 5, pp. 11275–11282, May 2013.
[32]G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto and A. A. Matsuda, “Nanoparticle-deposited TiO2 nanotube arrays for electrodes of dye-sensitized solar cells,” Nanoscale Res. Lett., vol. 10, pp. 1-6, Oct. 2015.
[33]Y. Kondo, H. Yoshikawa, K. Awaga , M. Murayama , T. Mori and Sunada K, “Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres,” Langmuir, vol. 24, pp. 547-550, Jul. 2008.
[34]P. Joshi, L. Zhang, D. Davoux, Z. Zhu, D. Galipeau and H. Fong, “Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency,” Energy Environ. Sci, vol. 3, pp. 1507-1510, Jul. 2010.
[35]X. Wang, J. Tian, C. Fei, L. Lv, Y. Wang and G. Cao, “Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells,” Rsc. Adv., vol. 5, pp. 8622-8629, Nov. 2015.
[36]C. Li, Y. Luo, X. Guo, D. Li, J. Mi and L. Sø, “Mesoporous TiO2 aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells,” J. Solid State Chem., vol. 196, pp. 504-510, Feb. 2012.
[37]V. Baglio, M. Girolamo, V. Antonucci and A. S. Arico, “Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells,” Int. J. Electrochem. Sci., vol. 6, pp. 3375-3384, Aug. 2011.
[38]M. S. Ahmad, A. K. Pandey, N. A. Rahim, “Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications a review,” Renew. Sust. Energ. Rev., vol. 77, pp.89-108, Feb. 2017.
[39]G. Redmond, D. Fitzmaurice and M. Graetzel, “Visible light sensitization by cis-bis (thiocyanato) bis (2, 2′-bipyridyl-4, 4′-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques,” Chem. Mater., vol. 6, pp.686-691, Sep. 1994.
[40]J. Z. Ou, R. A. Rani, M. H. Ham, M. R. Field, Y. Zhang and H. Zheng, “Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies,” Acs. Nano., vol. 6, pp. 4045-4053, May 2012.
[41]N. N. Dinh, M. C. Bernard, L. G. A. Hugot, T. Stergiopoulos and P. Falaras, “Photoelectrochemical solar cells based on SnO2 nanocrystalline films,” Comptes. Rendus. Chim., vol. 9, pp. 676-683, Sep. 2006.
[42]S. Gholamrezaei, M. S. Niasari, M. Dadkhah and B. Sarkhosh, “ New modified sol–gel method for preparation SrTiO3 nanostructures and their application in dye-sensitized solar cells,” J. Mater. Sci: Mater. Electron, vol. 27, pp. 118-125, Sep. 2016.
[43]K. Hara, Z. G. Zhao, Y. Cui, M. Miyauchi, M. Miyashita and S. Mori , “ Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells,” Langmuir, vol. 27, pp. 12730-12736, Apr. 2011.
[44]B. Tan, E. Toman, Y. Li and Y. Wu, “Zinc stannate (Zn2SnO4) dye-sensitized solar cells,” J. Am. Chem. Soc., vol. 129, pp. 4162-4163, Jun. 2007.
[45]S. Mathew, A. Yella, P. Gao, B. P. Humphry, B. F. Curchod and N. A. Ashari, “Dye-sensitized solar cells with 13% efficiency achieved through the molecule engineering of porphyrin sensitizers,” Nat. Chem., vol. 6, pp. 242-247, Dec. 2014.
[46]K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. I. Fujisawa and M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes,” Chem. Commun., vol. 51, pp. 15894-15897, Nov. 2015.
[47]H. Qin, S. Wenger, M. Xu, F. Gao, X. Jing and P. Wang, “ An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells,” J. Am. Chem. Soc., vol. 103, pp. 9202-9203, Jul. 2008.
[48]S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo and A. Hagfeldt, “ Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye- sensitized solar cells,” J. Am. Chem. Soc., vol. 132, pp. 16714-16724, Jun. 2010.
[49]J. N. Clifford, M. Planells and E. Palomares, “Advances in high efficiency dye sensitized solar cells based on Ru(II) free sensitizers and a liquid redox electrolyte,” J. Mater. Chem., vol. 22, pp. 24195-24201, Aug. 2012.
[50]N.K. Ibrayex, E. V. Seliverstova, A. A. Ishchenko and M. A. Kudinova, “ The effect of sulfonate groups on spectral-luminescent and photovoltaic properties of squarylium dyes,” J. Photochem. Photobiol. A: Chem., vol. 346, pp. 570-575, Feb. 2017.
[51]M. Grishina, O. Bolshakov, A. Potemkin and V. Potemkin, “ Benzo[1,2,5] thiadiazole dyes: Spectral and electrochemical properties and their relation to the photovoltaic characteristics of the dye-sensitized solar cells,” Dyes Pigments, vol.144, pp. 80-93, Feb. 2017.
[52]S. B. Novir and S. M. Hashemianzadeh, “Quantum chemical investigation of structural and electronic properties of trans- and cis-structures of some azo dyes for dye-sensitized solar cells,” Comput. Theor. Chem., vol. 1102, pp. 87-97, Sep. 2017.
[53]M. Grätzel, “ Conversion of sunlight to electric power by nanocrystalline dye- sensitized solar cells,” J. Photochem. Photobiol. A, vol. 164, p. 3-14, Oct. 2004.
[54]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “ Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” J. Am. Chem. Soc., vol. 127, pp. 16835-16847, Jul. 2005.
[55]M. K. Nazeeruddin, A. Kay, I. Rodicio, B. R. Humpbry, E. Miiller, P. Liska, N. Vlachopoulos and M. Grätzel, “ Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'- dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc., vol. 115, pp. 6382-6390, 1993.
[56]M. K. Nazeeruddin, S. M. Zakeeruddin, B. R. Humphry, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, “ Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc., vol. 123, pp. 1613-1624, Aug. 2001.
[57]J. Xia, F. Li, C. Huang, J. Zhai and L. Jiang, “ Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 944-952, Sep. 2006.
[58]B. Li, L. Wang, B. Kang, P. Wang and Y. Qiu, “ Review of recent progress in solid-state dyesensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 549-573, Apr. 2006.
[59]M. Biancardo, K. West and F. C. Krebs, “Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT: PSS counter electrodes applied to gel electrolyte assemblies,” J. Photochem. Photobiol. A: Chem., vol. 187, pp. 395-401, Mar. 2007.
[60]P. Li, Y. Zhang, W. Fa, X. Yang and L. Wang, “ Hollow platinum alloy tailored counter electrodes for photovoltaic applications,” J. Power Sources, vol. 360, pp.323-242, Mar. 2017.
[61]S. S. Nemala, P. Kartikay, S. Prathapani, H. L. M. Bohm, P. Bhargava, S. Bohm and S. Mallick,“ Liquid phase high shear exfoliated graphene nanoplatelets as counter electrode material for dye-sensitized solar cells,” J. Colloid Interface Sci., vol. 499, pp. 9-16, Jun. 2017.
[62]R. Kumar, S. S. Nemuala, S. Mallick and R. Bhargava, “ Synthesis and characterization of carbon based counter electrode for dye sensitized solar cells (DSSCs) using sugar free as a carbon material,” Sol. Energy, vol. 144, pp. 215-220, Nov. 2017.
[63]S. Hussain, S. F. Shaikh, D. Vikraman, R. S. Mane, O. S. Joo, M. Naushad and J. Jung, “High-performance platinum-free dye-sensitized solar cells with molybdenum disulfide films as counter electrodes,” ChemPhysChem, vol. 16, pp. 3959-3965, Dec. 2015.
[64]I. A. Sahito, K. C. Sun, A. A. Arbab, M. B. Qadir, S. H. Jeong, “Graphene coated cotton fabric as textile structured counter electrode for DSSC,” Electrochim. Acta., vol. 173, pp. 164-171, Aug. 2017.
[65]B. O. Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloial TiO2 films,” Nature, vol. 353, pp. 737-740, Apr. 1991.
[66]C. J. M. Chin, T. Y. Chen, M. Lee, C. F. Chang, Y. T. Liu and Y. T. Kuo, “ Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass,” J. Hasard. Mater., vol. 277, pp. 110-119, Sep. 2014.
[67]M. M. Byranvand, A. N. Kharat, A. Badiei and M. Bazargana, “ Electron transfer in dye- sensitized solar cells,” J. Optoelectron. Biomed. Mater., vol. 4, pp. 49-57, Dec. 2012.
[68]S. Haque, E. Palomares, B. M. Cho, A. M. Green, N. Hirata, K. R. Klug and J. R. Durrant, “Charge separation versus recombination in dye-Sensitized nanocrystalline solar cells : the minimization of kinetic redundancy,” J. Am. Chem. Soc., vol. 127, pp. 3456-3462, Mar. 2005.
[69]N. A. Anderson and T. Lian, “ Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films,” Coord. Chem. Rev.,vol. 248, pp. 1231-1246, Feb. 2004.
[70]Y.M. Lin, A. Valdes–Garcia, S.J. Han, D.B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris and K.A. Jenkins, “Wafer-scale graphene integrated circuit, ” Science, vol.332, pp.1294-1297, Aug. 2011.
[71]J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, “One-dimensional, twodimensional and three-dimensional nanostructured materials for advanced electrochemical energydevices,” Prog. Mater. Sci., vol. 57,pp.724-803, Apr. 2012.
[72]P. Dubey, A. Kumar, R. Prakash, “Non-covalent functionalization of graphene oxide by polyindole and subsequent incorporation of Ag nanoparticles for electrochemical applications,” Appl. Surf. Sci., vol.355, pp.262-267, Sep. 2015.
[73]C. Hu, G. Zheng, F. Zhao, H. Shao, Z. Zhang, N. Chen, L. Jiang, L. Qu, “A powerful approach to functional graphene hybrids for high performance energy–related applications,” Energy Environ. Sci., vol.7, pp.3699-3708, Aug. 2014.
[74]S.M. Jung, D.L. Mafra, C.T. Lin, H.Y. Jung, J. Kong, “Controlled porous structures of graphene aerogels and their effect on supercapacitor performance,” Nanoscale, vol.7, pp.4386-4393, Dec. 2015.
[75]T.H. Kim, S. Shah, L. Yang, P.T. Yin, M.K. Hossain, B. Conley, J.W. Choi, K.B. Lee, “Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid–pattern arrays,” ACS Nano, vol.9, pp.3780-3790, Jan. 2015.
[76]http://graphenewholesale.com/what-is-graphene/
[77]https://investorintel.com/market-analysis/market-analysis-intel/understanding-graphene-part-6-graphene-oxide/
[78]https://www.graphenea.com/products/reduced-graphene-oxide-1-gram
[79]M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, “Graphene-based ultracapacitors,” Nano Letters, vol. 8, pp. 3498-3502, Oct. 2008.
[80]C. Y. Ho, C. C. Liang, H. W. Wang, “Investigation of low thermal reduction of graphene oxide for dye-sensitized solar cell counter electrode,” Colloids Surf. A, vol. 481, pp. 222-228, Oct. 2015.
[81]L. Ling, X. Tao, S. Zhongxizo, L. Chunliang, and M. Fei. “Effect of sputtering pressure on surface roughness, oxygen vacancy and electrical properties of a-IGZO thin films,”Rare Metal Mat. Eng., vol.45, pp. 1992-1996, Aug. 2016.
[82]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488–492, Mar. 2004.
[83]C. H. Wu, K. M. Chang, S. H. Huang, I. C. Deng, C. J. Wu, W. H. Chiang, C. C. Chang,“Characteristics of IGZO TFT prepared by atmospheric pressure plasma jet using PE-ALD Al2O3 gate dielectric,” IEEE Electron Device Lett., vol. 33, pp. 552-554, May 2012.
[84]A. Suresh, P. Gollakot, P. Wellenius, A. Dhawan and J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD,” Thin Solid Films, vol. 516, pp. 1326-1329, Feb. 2008.
[85]C. H. Wu, F. C. Yang, W. C. Chen and C. L. Chang, “Influence of oxygen/argon reaction gas retio on optical and electrical characteristics of amorphous IGZO thin films coated by hipims process,” Surf. Coat. Tech., vol. 303, pp. 209-214, Jun. 2016.
[86]H. Yabuta, M Sano, K Abe, T Aiba, T. Den and H. Kumomi, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature RF-magnetron sputtering,” Appl. Phys. Lett., vol. 89, pp. 112123-1-112123-3, Apr. 2006.
[87]P. Heremans, A. K. Tripathi, A. J. Meux, E. C. P. Smits, B. Hou, G. Pourtois and G. H. Gelinck, “ Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications,” Adv. Mater., vol. 28, pp. 4266-4282, Apr. 2016.
[88]http://archive.eetasia.com/www.eetasia.com/ART_8800668322_480700_NT_67c4e775.HTM
[89]Y. S. Rim, H. Chen, B. Zhu, S. H. Bae, S. Zhu, P. J. Li, I. C. Wang and Y. Yang, “Interface engineering of metal oxide semiconductors for biosensing applications,” Adv. Mater. Interfaces, vol. 289, pp. 1700020-1700042, Dec. 2017.
[90]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488-492, May 2004.
[91]Y. S. Rim, Y. Yang, S. H. Bae, H. J. Chen, C. Li, M. S. Goorsky and Y. Yang, “ Ultrahigh and broad spectral photodetectivity of an organic–inorganic hybrid phototransistor for flexible electronics,” Adv. Mater., vol. 27, pp. 6685-6891, Jul. 2015.
[92]M. H. Kim, M. J. Choi, K. Kimura, H. Kobayashi and D. K. Choi, “Improvement of the positive bias stability of a-IGZO TFTs by the HCN treatment,” Solid State Electron., vol. 126, pp. 87-91, Sep. 2016.
[93]S. L. Zhan, M. Zhao, D. M. Zhuang, E. G. Fu, M. J. Cao, L. Guo and L. Q. Ouyang, “The influence of nitrogen implantation on the electrical properties of amorphous IGZO,” Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 406, pp. 596-599, Jan. 2017.
[94]S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Grazel and A. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, vol. 101, pp.2576-2582, Aug. 1997.
[95]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, “Conversion of light to electricity by cis −X2Bis (2,2D-bipyridyl-4,4D-dicarboxylate) ruthenium(II)charge-transfer sensitizers (X = C1−,Br−, I−,CN−, andSCN−) on nanocrystalline TiO2 electrodes,” J. Phys. Chem. Soc., vol. 115, pp. 6382-6390, Dec. 1993.
[96]T. L. Bahers, F. Labat, T. Pauporte and I. Ciofini, “Effect of solvent and additives on the open-circuit voltage of ZnO-based dye-sensitized solar cells: a combined theoretical and experimental study,” Phys. Chem. Chem. Phys., vol. 12, pp. 14710-14719, Nov. 2010.
[97]https://www.ricoh.com/technology/tech/066_dssc.html
[98]S. Fiechter, P. Bogdanoff, T. Bak, and J. Nowotny, “Basic concepts of photoelectrochemical solar energy conversion systems,” Adv. Appl. Ceram., vol. 111, pp. 39–43, May 2012.
[99]C. J. Wood, G. H. Summers, and E. A. Gibson, “Increased photocurrent in a tandem dye-sensitized solar cell bymodifications in push–pull dye-design,” Chem. Commun., vol. 51, pp. 3915–3918, Jun. 2015.
[100]A. Nattestad, A. J.Mozer,M. K. R. Fischer et al., “Highly efficient photocathodes for dye-sensitized tandem solar cells,” Nature Mater., vol. 9, pp. 31–35, Sep. 2010.
[101]A. Nakasa, H. Usami, S. Sumikura, S. Hasegawa, T. Koyama, and E. Suzuki, “A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode,” Chem. Lett., vol. 34, pp. 500–501, Mar. 2005.
[102]J. Qian, K.-J. Jiang, J.-H. Huang, Q. S. Liu, L.-M. Yang, and Y. Song, “A selenium-based cathode for a high-voltage tandem photoelectrochemical solar cell,” Angew. Chem. Int. Ed., vol. 51, pp. 10351–10354, Aug. 2012.
[103]S. Powar, R. Bhargava, T. Daeneke et al., “Thiolate/disulfide based electrolytes for p-type and tandem dye-sensitized solar cells,” Electrochim. Acta, vol. 182, pp. 458–463, Jul. 2015.
[104]https://ares.jsc.nasa.gov/research/laboratories/sem.html
[105]http://www.eaglabs.com.tw/sem.html
[106]https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
[107]http://www.eaglabs.com.tw/eds.html
[108]http://www.eaglabs.com.tw/xps-esca.html
[109]http://www.thermo.com.cn/article6421.html
[110]http://www.eag.com/auger-electron-spectroscopy/
[111]https://www1.udel.edu/pchem/C444/info/AES_XPS.pdf
[112]http://www.ocivm.com/_auger_electron_spectroscopy.html
[113]https://www.slideshare.net/HIADERY/principle-applications-of-transmission-electron-microscopy-tem-high-resolution-tem
[114]http://www.hk-phy.org/atomic_world/tem/tem02_e.html
[115]https://medicine.utoronto.ca/research/transmission-electron-microscopy-tem
[116]https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/uv-vis/spectrum.htm
[117]N. S. Das, P. K. Ghosh, M. K. Mitra, K. K. Chattopadhyay, “Effect of film thickness on the energy band gap of nanocrystalline Cds thin films analyzed by spectroscopic ellipometry,” Physica E, vol. 42, pp. 2097-2102,2010.
[118]S. K. J. Al-Ani, I. H. O. Al-Hassany, Z. T. Al-Dahana, “The optical properties and a.c. conductivity of magnesium phosphate glasses,” J. Mater. Sci., vol. 30, pp. 3720-3729, 1995.
[119]http://labomedinc.com/labomed-spectrophotometer.html
[120]B. Y. Chang and S. M. Park,” Electrochemical impedance spectroscopy, “ Ann. Rev. Anal. Chem., vol. 3, pp. 207-229, Jul. 2010.
[121]J. E. B. Randles, “Kinetics of rapid electrode reactions,” Discuss. Faraday Soc., vol. 1, pp. 11-19, Oct. 1947.
[122]C. D. Chou, “Studies on Dye-sensitized TiO2 solar cell based on porphyrin and phthalocyanine, “National Taiwan University of Science and Technology, Department of Chemical Engineering, master's thesis,2006 (周啟達,“以紫質及酞花青敏化之二氧化鈦染料敏化太陽能電池研究”,國立臺灣科技大學化學工程系,碩士論文,2006。)[123]K. S. Loh, Y. H. Lee, A. Musa, A. A. Salmah, I. Zamri, “Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid,” Sens., vol. 8, pp. 5775-5791, Dec. 2008.
[124]J. Bisquert, “Theory of the impedance of electron diffusion and recombination in a thin layer,” J. Phys. Chem. B., vol. 106, pp. 325-333, Apr. 2002.
[125]J. C. Chou, C. H. Huang, Y. H. Liao, S. W. Chuang, L. H. Tai, Y. H. Nien, “Effect of different grapheme oxide contents on dye-sensitized solar cells,” IEEE J. Photovolt., vol. 5, pp.1106-1112, Feb. 2015.
[126]X. Luan, L. Chen, J. Zhang, G. Qc, J. Flake and Y. Wang, “Electrophoretic deposition of reduced grapheme oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells,” Electrochim. Acta., vol. 111, pp.216-222, Jun. 2013.
[127]B. Tripathi, P. Yadav, M. Kumar, “Chare transfer and recombination kinetics in dye-sensitized solar cell using static and dynamic electrical characterization techniques,” Sol. Energy, vol. 108, pp. 107-116, Jul. 2014.
[128]C. P. Hsu, K. M. Lee, J. T. W. Huang, C. Y. Lin, C. H. Lee, L. P. Wang, S. Y. Tsai and K. C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta., vol. 53, pp. 7514-7522, 2008.
[129]S. Z. Siddick, C. W. Lai, J. C. Juan and S. B. Hamid, “Reduced graphene oxide–titania nanocomposite film for improving dye-sensitized solar cell (DSSCs) performance,” Curr. Nanosci, vol. 13, pp. 494-500, Aug. 2017.
[130]R. Ramamoorthy, K. Karthika, A. M. Dayana, G. Maheswari, V. Eswaramoorthi, N. Pavithra, S. Anandan and R. V. Williams, “Reduced graphene oxide embedded titanium dioxide nanocomposite as novel photoanode material in natural dye-sensitized solar cells,” J. Mater. Sci. Mater. Electron, vol. 28, pp. 13678-13689, Sep. 2017.
[131]H. Zhang, Y. Lv, C. Yang, H. Chen and X. Zhou, “One-Step Hydrothermal Fabrication of TiO2/reduced graphene oxide for high-efficiency dye-sensitized solar cells,” J. Electron. Mater., vol. 47, pp. 1630-1637, Dec. 2017.
[132]J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang and L. Jiang, “Hierarchically ordered macro mesoporous TiO2 graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities,”ACS Nano, vol. 5, pp. 590-596, Feb. 2011.
[133]X. Fang, M. Li, K. Guo, X. Liu, Y. Zhu, B. Sebo, X. Zhao, “Graphene-compositing optimization of the properties of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 101, pp. 176-181, Sep. 2014.
[134]H. Cai, J. Li, X. Xu, H. Tang, J. Luo, K. Binnemans, J. Fransaer and D. E. D. Vos, “Nanostructured composites of one-dimensional TiO2 and reduced graphene oxide for efficient dye-sensitized solar cells,” J. Alloys Compd., vol. 697, pp. 132-137, May 2017.
[135]A. Carissa, M.S. Esteban and E.P. Enriquez, “Graphene-anthocyanin mixture as photosensitizer for dye-sensitized solar cell,” Sol. Energy, vol. 98, pp.392-399, Jan. 2013.
[136]M. Souibgui, H. Ajlani, A. Cavanna, M. Oueslati, A. Meftah and A. Madouri, “Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride,”Superlattices Microstruct., Superlattice. Microst., vol.112, pp. 394-403, Mar. 2017.
[137]I. Po ́csik , M. Hundhausen, M. Koo ́s, L. Ley,“ Origin of the D peak in the Raman spectrum of microcrystalline graphite,” J. Non-Cryst. Solids, vol. 227, pp. 1083-1086, Nov. 1998.
[138]Y. Xie, X. Zhou, H. Mi, J. Ma, J. Yang and J. Cheng, “High efficiency ZnO-based dye-sensitized solar cells with a 1H,1H,2H,2H-perfluorodecyltriethoxysilane chain barrier for cutting on interfacial recombination,” Appl. Surf. Sci., vol. 434, pp. 1144-1152, May 2018.
[139]H. Seo, M. K. Son, S. Park, M. Jeong, H. J. Kim, G. Uchida, N. Itagaki, K. Koga, M. Shiratani, “Electrochemical impedance analysis on the additional layers for the enhancement on the performance of dye-sensitized solar cell,” Thin Solid Films, vol. 554, pp. 122-126, Mar. 2014.
[140]C. P. Hsu, K. M. Lee, J. T. W. Huang, C. Y. Lin, C. H. Lee, L. P. Wang, S. Y. Tsai and K. C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta., vol. 53, pp. 7514-7522, Feb. 2008.
[141]A. Sacco, “Electrochemical impedance spectroscopy: fundamentals and application in dye-sensitized solar cells,” Renew. Sust. Energ. Rev., vol. 79, pp. 814-829, Jul. 2017.
[142]Q. Wang, J. E. Moser and M. Gra1tzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B, vol. 109, pp. 14945-14953, Jun. 2005.
[143]G. Xiong, R. Shao, T. C. Droubay, A. G. Joly, K. M. Beck, S. A. Chambers and W. P. Hess, “Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals,” Adv. Funct. Mater., vol. 17, pp. 2133-2138, Nov. 2007.
[144]R. W. Hewitt and N. Winograd, “Oxidation of polycrystalline indium studied by X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy,” J. Appl. Phys., vol.51, pp.2620-2624, Aug. 1980.
[145]S. C. Ghosh, “X-ray photoelectron spectroscopic study o the formation of catalytic gold nanoparticles on ultraviolet-ozone oxidized GaAs(100) substrates,” J. Appl. Phys., vol.101, pp. 114322-114330, Nov. 2007.
[146]M. C. Biesinger, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci., vol.257, pp. 887-898, Oct. 2010.
[147]C. C. Lin, Y. P. Chang, H. B. Lin and C. H. Lin, “Effect of non-lattice oxygen on ZrO2 based resistive switching memory,” Nanoscale Res. Lett., vol. 7, pp.187-193, Dec. 2012.
[148]L. Hsu and E. Y. Wang, “Photovoltaic properties of In2O3/semiconductor heterojunction solar cells,” 13th Photovoltaic Specialists Conference, pp. 536–540, Dec. 1978.
[149]E. F. Archibong and E. N. Mvula, “Structure and electron detachment energies of Ga2O3 and Ga3O2,” Chem. Phys. Lett., vol. 408, pp. 371, Nov. 2005.
[150]S. Gowtham, M. Deshapande, A. Costales and R. Pandey, “Structural energetic, electronic, bonding, and vibrational properties of Ga3O, Ga3O2, Ga3O3, Ga2O3, and GaO3 clusters,” J. Phys. Chem.B, vol. 109, pp. 14836, Feb. 2005.
[151]K. Jacobi, A. Zwicker and A. Gutmann, “Work function, electron affinity and band bending of zinc oxide surface,” Surf. Sci., vol.141, pp. 109, Jun. 1984.
[152]N. S. Das, P. K. Ghosh, M. K. Mitra, K. K. Chattopadhyay, “Effect of film thickness on the energy band gap of nanocrystalline Cds thin films analyzed by spectroscopic ellipometry,” Physica E, vol. 42, pp. 2097-2102, Feb. 2010.
[153]S. K. J. Al-Ani, I. H. O. Al-Hassany, Z. T. Al-Dahana, “The optical properties and a.c. conductivity of magnesium phosphate glasses,” J. Mater. Sci., vol. 30, pp. 3720-3729, Oct. 1995.
[154]O. Cheshnivsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu and R. E. Smalley, “Ultraviolet photoelectron spectroscopy of semiconductor clusters silicon and germanium,” Chem. Phys. Lett., vol. 138, pp. 119-124, Jul. 1987.
[155]H. Cai, J. Li, X. Xu, H. Tang, J Luo, K. Binnenans. J. Fransaer and D. D. Vos, “Nanostructured composites of one-dimensional TiO2 and reduced graphene-oxide for efficient dye-sensitized solar cells,” J. Alloys Compd., vol. 697, pp. 132-137, Mar. 2017.
[156]H. R. Lv, X. W. Yuan H. J. Lv and C. Cui, “Reduced graphene oxide modified TiO2 nanoparticles composites for improved performance of dye-sensitized solar cells,” Adv, Eng. Res., vol. 110 pp. 191-195, Apr. 2017.
[157]N. T. R. N. Kumara, A. L. Tan, A. H. Mirza, R.L.N. Chandrakanthi, “Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells”, J. Alloys Compd., vol. 581, pp. 186–191, Nov. 2013
[158]H. Seo, M. K. Son, J. K. Ki, S. Choi, S. K. Kim, H. J. Kim, “Analysis of current loss from a series-parallel combination of dye-sensitized solar cells using electrochemical impedance spectroscopy,” Photonics Nanostruct., vol. 10. pp. 568-274, Jul. 2014.
[159]T. C. Wei, J. L. Lan, C. C. Wan, W. C. Hsu and Y. H. Chang, “Fabrication of grid type dye sensitized solar modules with 7% conversion efficiency by utilizing commercially available materials, ” Prog. Photovolt: Res. Appl., vol. 21, PP. 1625-1633 , May 2012.
[160]S. Casaluci, M. Gemmi, V. Pellegrin, A. D. Cario and F. Bonaccorso, “Graphene-based large area dye-sensitized solar cell module, ” Nanoscale, vol. 8, pp. 5368-5378, Jun. 2013.
[161]P. Salvador, M. G. Hidalgo, A. Zaban and J. Bisquert, “Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells,” J. Phys. Chem. B, vol. 109, pp. 15915-15926, Jul. 2005.
[162]J. L. Lan, T. C. Wei, S. P. Feng, C. C. Wan and G. Cao, “Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities,” J. Phys. Chem. C, vol. 116, pp. 25727-25733, Nov. 2012.
[163]M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Gratzel and A. Hagfeldt, “Dye-sensitized solar cells for efficient power generation under ambient lighting,” Nature Photon., vol.11, pp. 372-378, May 2018.
[164]A. Pal, A. Jana, S. Bhattacharya and J. Datta, “SPR effect of AgNPs decorated TiO2 in DSSC using TPMPI in the electrolyte: approach towards low light trapping,” Electrochim. Acta., vol. 243, pp. 33-43, May 2017.
[165]H. S. Hafez, S. S. Shenouda and M. Fadel, “Photovoltaic characteristics of natural light harvesting dye sensitized solar cells,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 192, pp. 23-26, Nov. 2018.
[166]P. Zhai, H. Lee, Y. T. Huang, T. C. Wei and S. P. Peng, “Study on the blocking effect of a quantum-dot TiO2 compact layer in dye sensitized solar cells with ionic liquid electrolyte under low intensity illumination,” J. Power Sources., vol. 329, pp. 502-509, Aug. 2016.
[167]https://www.teamviewer.com/zhtw/download/windows/