|
[1]H.-C. Hsu, “Graphene Oxide Nanocomposites for Carbon Dioxide Photoreduction,” Jul. 2014. [2]https://climate.nasa.gov/evidence/. [3]M. Aresta and A. Dibenedetto, “Utilisation of CO2 as a chemical feedstock: opportunities and challenges,” Dalton Trans., vol. 17, no. 28, pp. 2975–18, 2007. [4]J. P. Smol, “Climate Change: A planet in flux,” Nature, vol. 483, no. 7387, pp. S12–S15, 2012. [5] https://en.wikipedia.org/wiki/Electrochemical_reduction_of_carbon_dioxide. [6]S. Xie, Q. Zhang, G. Liu, and Y. Wang, “Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures,” Chemical Communications, vol. 52, pp. 35–59, Dec. 2015. [7]Y. Izumi, “Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond,” Coordination Chemistry Reviews, vol. 257, no. 1, pp. 171–186, Jan. 2013. [8]P. Usubharatana, D. McMartin, A. Veawab, and P. Tontiwachwuthikul, “Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams,” Ind. Eng. Chem. Res., vol. 45, no. 8, pp. 2558–2568, Apr. 2006. [9]M. Tahir and N. S. Amin, “Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels,” ENERGY CONVERSION AND MANAGEMENT, vol. 76, no. C, pp. 1–21, Dec. 2013. [10]Y. Li, Y.-L. Li, C. M. Araujo, W. Luo, and R. Ahuja, “Single-layer MoS2 as an efficient photocatalyst,” Catal. Sci. Technol., vol. 3, no. 9, pp. 2214–7, 2013. [11]W. C. Chueh, C. Falter, M. Abbott, D. Scipio, and P. Furler, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” 2010. [12]R. D. Richardson, E. J. Holland, and B. K. Carpenter, “A renewable amine for photochemical reduction of CO2,” Nature Chemistry, vol. 3, no. 4, pp. 301–303, Feb. 2011. [13]W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang, and J. C. S. Wu, “A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis,” “Applied Catalysis B, Environmental,” vol. 132, pp. 445–451, Mar. 2013. [14]J. D. Graham and N. I. Hammer, “Photocatalytic Water Splitting and Carbon Dioxide Reduction,” in Handbook of Climate Change Mitigation, no. 46, New York, NY: Springer US, 2012, pp. 1755–1780. [15]T. Inoue, A. Fujishima, S. Konishi, and K. Honda, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders,” Nature, 1979. [16]H. Xu, S. Ouyang, P. Li, T. Kako, and J. Ye, “High-Active Anatase TiO2 Nanosheets Exposed with 95% {100} Facets Toward Efficient H2 Evolution and CO2 Photoreduction,” ACS Appl. Mater. Interfaces, vol. 5, no. 4, pp. 1348–1354, Feb. 2013. [17]Y. Wang, B. Li, C. Zhang, L. Cui, S. Kang, X. Li, and L. Zhou, “Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation,” “Applied Catalysis B, Environmental,” vol. 130, pp. 277–284, Feb. 2013. [18]J. Núñez, V. A. de la Peña O'Shea, P. Jana, J. M. Coronado, and D. P. Serrano, “Effect of copper on the performance of ZnO and ZnO1−xNx oxides as CO2 photoreduction catalysts,” Catalysis Today, vol. 209, pp. 21–27, Jun. 2013. [19]Y. Zhang, Y. Tang, X. Liu, Z. Dong, H. H. Hng, Z. Chen, T. C. Sum, and X. Chen, “Three-Dimensional CdS-Titanate Composite Nanomaterials for Enhanced Visible-Light-Driven Hydrogen Evolution,” Small, vol. 9, no. 7, pp. 996–1002, Dec. 2012. [20]R. H. Coridan, M. Shaner, C. Wiggenhorn, B. S. Brunschwig, and N. S. Lewis, “Electrical and Photoelectrochemical Properties of WO3/Si Tandem Photoelectrodes,” J. Phys. Chem. C, vol. 117, no. 14, pp. 6949–6957, Apr. 2013. [21]P. Praus, O. Kozák, K. Kočí, A. Panáček, and R. Dvorský, “CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide,” Journal of Colloid And Interface Science, vol. 360, no. 2, pp. 574–579, Aug. 2011. [22]D. Finkelstein-Shapiro, S. H. Petrosko, N. M. Dimitrijevic, D. Gosztola, K. A. Gray, T. Rajh, P. Tarakeshwar, and V. Mujica, “CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles,” J. Phys. Chem. Lett., vol. 4, no. 3, pp. 475–479, Feb. 2013. [23]B. Michalkiewicz, J. Majewska, G. Kądziołka, K. Bubacz, S. Mozia, and A. W. Morawski, “Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst,” Biochemical Pharmacology, vol. 5, pp. 47–52, Mar. 2014. [24]S. S. Tan, L. Zou, and E. Hu, “Photosynthesis of hydrogen and methane as key components for clean energy system,” Science and Technology of Advanced Materials, vol. 8, no. 1, pp. 89–92, Jan. 2016. [25]D. Liu, Y. Fernández, O. Ola, S. Mackintosh, M. Maroto-Valer, C. M. A. Parlett, A. F. Lee, and J. C. S. Wu, “On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2,” CATCOM, vol. 25, no. C, pp. 78–82, Aug. 2012. [26]C. Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus, and C. Matranga, “Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts,” J. Mater. Chem., vol. 21, no. 35, pp. 13452–6, 2011. [27]B. Chai, T. Peng, P. Zeng, and J. Mao, “Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light,” J. Mater. Chem., vol. 21, no. 38, pp. 14587–7, 2011. [28]F. Lakadamyali and E. Reisner, “Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle,” Chemical Communications, vol. 47, no. 6, pp. 1695–4, 2011. [29]O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, “High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels,” Nano Lett., vol. 9, no. 2, pp. 731–737, Feb. 2009. [30]V. Singh, I. J. C. Beltran, J. C. Ribot, and P. Nagpal, “Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis,” Nano Lett., vol. 14, no. 2, pp. 597–603, Feb. 2014. [31]K. Adachi, K. Ohta, and T. Mizuno, “Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide,” Solar Energy, vol. 53, no. 2, pp. 187–190, Aug. 1994. [32]M. Subrahmanyam and S. Kaneco, “A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity,” Applied Catalysis B, vol. 23, no. 2, pp. 169–174, 1999. [33]V. P. Indrakanti, J. D. Kubicki, and H. H. Schobert, “Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook,” Energy Environ. Sci., vol. 2, no. 7, pp. 745–14, 2009. [34]J. C. S. Wu and H.-M. Lin, “Photo reduction of CO2 to methanol via TiO2 photocatalyst,” International Journal of Photoenergy, vol. 7, no. 3, pp. 115–119, 2005. [35]T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale, and F. A. Armstrong, “CO2 photoreduction at enzyme-modified metal oxide nanoparticles,” Energy Environ. Sci., vol. 4, no. 7, pp. 2393–7, 2011. [36]C.-C. Yang, J. Vernimmen, V. Meynen, P. Cool, and G. Mul, “Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15,” Journal of Catalysis, vol. 284, no. 1, pp. 1–8, Nov. 2011. [37]K. Iizuka, T. Wato, Y. Miseki, K. Saito, and A. Kudo, “Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15(A = Ca, Sr, and Ba) Using Water as a Reducing Reagent,” J. Am. Chem. Soc., vol. 133, no. 51, pp. 20863–20868, Dec. 2011. [38]X. Feng, J. D. Sloppy, T. J. LaTempa, M. Paulose, S. Komarneni, N. Bao, and C. A. Grimes, “Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide,” J. Mater. Chem., vol. 21, no. 35, pp. 13429–5, 2011. [39]S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, “Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors,” Angew. Chem. Int. Ed., vol. 52, no. 29, pp. 7372–7408, Jun. 2013. [40]A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B, vol. 83, no. 24, pp. 4059–4, Jun. 2011. [41]Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, “High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes,” Science, 1995. [42]M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, and M. Ceh, “Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes,” vol. 292, no. 5516, pp. 479–481, 2001. [43]F. A. Frame and F. E. Osterloh, “CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light,” J. Phys. Chem. C, vol. 114, no. 23, pp. 10628–10633, Jun. 2010. [44]Q. Xiang, J. Yu, and M. Jaroniec, “Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles,” J. Am. Chem. Soc., vol. 134, no. 15, pp. 6575–6578, Apr. 2012. [45]Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, “MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction,” J. Am. Chem. Soc., vol. 133, no. 19, pp. 7296–7299, May 2011. [46]M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, and F. Besenbacher, “One-Dimensional Metallic Edge States in MoS2,” Phys. Rev. Lett., vol. 87, no. 19, pp. 17–4, Oct. 2001. [47]T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts,” Science, vol. 317, no. 5834, pp. 100–102, Jul. 2007. [48]J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, “Trends in the Exchange Current for Hydrogen Evolution,” J. Electrochem. Soc., vol. 152, no. 3, pp. J23–4, 2005. [49]B. Hinnemann, P. G. Moses, J. Bonde, K. P. J rgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. N rskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc., vol. 127, no. 15, pp. 5308–5309, Apr. 2005. [50]D. D. Zhu, J. L. Liu, and S. Z. Qiao, “Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide,” Adv. Mater., vol. 28, no. 18, pp. 3423–3452, Mar. 2016. [51]P. Joensen, R. F. Frindt, and S. R. Morrison, “Single-layer MoS2,” Materials research bulletin, vol. 21, pp. 457–461, Jan. 1986. [52]J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” Science, vol. 331, no. 6017, pp. 568–571, Feb. 2011. [53]Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, “Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication,” Angew. Chem. Int. Ed., vol. 50, no. 47, pp. 11093–11097, Oct. 2011. [54]S. N. Heo, Y. Ishiguro, R. Hayakawa, T. Chikyow, and Y. Wakayama, “Perspective: Highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process,” APL Materials, vol. 4, no. 3, pp. 030901–8, Mar. 2016. [55]Y.-K. Lin, “Surface and Interfacial Properties on CVD-grown MoS2: From Growth Control to Potential Applications,” Jul. 2016. [56]Y. Lee, J. Lee, H. Bark, I.-K. Oh, G. H. Ryu, Z. Lee, H. Kim, J. H. Cho, J.-H. Ahn, and C. Lee, “Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor,” Nanoscale, vol. 6, no. 5, pp. 2821–6, 2014. [57]Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, “Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate,” Small, vol. 8, no. 7, pp. 966–971, Feb. 2012. [58]H. F. Liu, S. L. Wong, and D. Z. Chi, “CVD Growth of MoS2-based Two-dimensional Materials,” Chem. Vap. Deposition, vol. 21, no. 10, pp. 241–259, Nov. 2015. [59]Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, “Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization,” Nanoscale, vol. 4, no. 20, pp. 6637–5, 2012. [60]Y. Shi, H. Li, and L.-J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques,” Chemical Society Reviews, vol. 44, pp. 2744–2756, Apr. 2015. [61]A. M. van der Zande, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nature Publishing Group, vol. 12, no. 6, pp. 554–561, May 2013. [62]S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, “Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition,” Chem. Mater., vol. 26, no. 22, pp. 6371–6379, Nov. 2014. [63]M. O'Brien, N. McEvoy, T. Hallam, H.-Y. Kim, N. C. Berner, D. Hanlon, K. Lee, J. N. Coleman, and G. S. Duesberg, “Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply,” Sci Rep, vol. 4, no. 1, pp. 183–7, Dec. 2014. [64]H. Komiyama, Y. Shimogaki, and Y. Egashira, “Chemical reaction engineering in the design of CVD reactors,” Chemical Engineering Science, vol. 54, no. 13, pp. 1941–1957, Jul. 1999. [65]A. Chen and Z. Krivokapic, “Sidewall graphene devices for 3-D electronics,” US 7,993,986 B2, 09-Aug-2011. [66]Z. Krivokapic and B. Sahu, “FinFET device with a graphene gate electrode and methods of forming same ,” US 8,815,739 B2, 26-Aug-2014. [67]Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, Conductive Carbon Nanotube Films,” Science, vol. 305, no. 5688, pp. 1273–1276, Aug. 2004. [68]Z.-Y. Yang, L.-J. Jin, G.-Q. Lu, Q.-Q. Xiao, Y.-X. Zhang, L. Jing, X.-X. Zhang, Y.-M. Yan, and K.-N. Sun, “Sponge-Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance,” Adv. Funct. Mater., vol. 24, no. 25, pp. 3917–3925, Mar. 2014. [69]X. Xu, L. Pan, Y. Liu, T. Lu, Z. Sun, and D. H. C. Chua, “Facile synthesis of novel graphene sponge for high performance capacitive deionization,” Sci Rep, vol. 5, no. 1, pp. 3917–9, Feb. 2015. [70]Bong, H., Jo, S. B., Kang, B., Lee, S. K., Kim, H. H., Lee, S. G., & Cho, K., “Graphene growth under Knudsen molecular flow on a confined catalytic metal coil,” Nanoscale, vol. 7, pp. 1314–1324, Dec. 2014. [71]J. Low, J. Yu, and W. Ho, “Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel,” J. Phys. Chem. Lett., vol. 6, no. 21, pp. 4244–4251, Nov. 2015. [72]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, no. 5932, pp. 1312–1314, Jun. 2009. [73]J. Yu, J. Jin, B. Cheng, and M. Jaroniec, “A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel,” J. Mater. Chem. A, vol. 2, no. 10, pp. 3407–10, 2014. [74]X. An, K. Li, and J. Tang, “Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2,” ChemSusChem, vol. 7, no. 4, pp. 1086–1093, Feb. 2014. [75]P.-Q. Wang, Y. Bai, P.-Y. Luo, and J.-Y. Liu, “Graphene–WO3 nanobelt composite: Elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels,” CATCOM, vol. 38, no. C, pp. 82–85, Aug. 2013. [76]D. Chen, H. Zhang, Y. Liu, and J. Li, “Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications,” Energy Environ. Sci., vol. 6, no. 5, pp. 1362–26, 2013. [77]Y. P. Hsieh, C. H. Shih, Y. J. Chiu, and M. Hofmann, “High-throughput graphene synthesis in gapless stacks,” Chem. Mater., 2015. [78]A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature, vol. 499, no. 7459, pp. 419–425, Jul. 2013. [79]Y. Li, Z. Qi, M. Liu, Y. Wang, X. Cheng, G. Zhang, and L. Sheng, “Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates,” Nanoscale, vol. 6, no. 24, pp. 15248–15254, Oct. 2014. [80]Y.-K. Lin, R.-S. Chen, T.-C. Chou, Y.-H. Lee, Y.-F. Chen, K.-H. Chen, and L.-C. Chen, “Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces, vol. 8, no. 34, pp. 22637–22646, Aug. 2016. [81]L. S. Hong, Y. Shimogaki, and H. Komjyama, “Macro/microcavity method and its application in modeling chemical vapor deposition reaction systems,” Thin Solid Films, 2000. [82]M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat Mater, vol. 5, no. 2, pp. 102–106, Jan. 2006. [83]K. Watanabe and H. Komiyama, “Micro/Macrocavity Method Applied to the Study of the Step Coverage Formation Mechanism of SiO2 Films by LPCVD,” J. Electrochem. Soc., vol. 137, no. 4, pp. 1222–1227, Apr. 1990.
|