跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施晶華
研究生(外文):SHIH, CHING-HUA
論文名稱:二硫化鉬與石墨烯複合物之生長機制及其光催化之應用
論文名稱(外文):Growth Mechanism of MoS2/Graphene Hybrid and Its Photocatalytic Application
指導教授:謝雅萍謝雅萍引用關係林麗瓊林麗瓊引用關係
指導教授(外文):HSIEH, YA-PINGCHEN, LI-CHYONG
口試委員:謝馬利歐敖仲寧
口試委員(外文):Mario HofmannAOH, JONG-NING
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:84
中文關鍵詞:二氧化碳還原光觸媒二硫化鉬石墨烯化學氣相沈積複合材料
外文關鍵詞:CO2 reductionphotocatalystMoS2grapheneCVDhybrid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
二氧化碳的排放引發全球溫室效應是人類面臨的關鍵議題。除了降低二氧化碳的排放量,科學家發現,利用化學還原反應,將二氧化碳藉由光催化轉換還原成一氧化碳或碳氫化合物,透過此一機制將二氧化碳轉換成燃料,是目前關注的主要課題之一。在添加光催化劑的條件下,將能提高二氧化碳的光催化轉換效率;因此,開發高性能光催化劑以提昇二氧化碳轉化活性和進一步了解機制是非常重要的。二維結之構二硫化鉬具有合適的能隙位置,並且其催化效果可與白金的相比擬,有較強的氫吸附能力以及脫氫效果,將是一個值得探討的研究對象。此外,石墨烯具有極佳的電子導電性、良好的透光率、較大的表面積和優異的化學穩定性。由研究顯示,透過石墨烯與光催化劑的複合將可以調變其半導體特性,藉由改變能隙大小和調整價帶與導帶的位置,可以清楚地了解二硫化鉬/石墨烯複合材料的機制,並期望有效地提升光催化二氧化碳還原成太陽能燃料的效率。
我們將二硫化鉬/石墨烯複合材料應用至二氧化碳還原反應後,透過氣相層析儀分析結果與單層二硫化鉬相比較,結果顯示二硫化鉬/石墨烯複合物檢測出擁有較多種的光催化產物,且二硫化鉬/石墨烯複合材料的量子效率較單層二硫化鉬提升了五倍。由研究成果顯示,二硫化鉬/石墨烯複合材料具有優異的光催化效果,對於二氧化碳還原有著突破性的貢獻。
Carbon dioxide (CO2) emission causing global warming has been a crucial issue these years. In addition to reducing the amount of greenhouse gas emission, scientists discover that photocatalytic conversion of carbon dioxide, a process of chemical reduction whereby carbon dioxide is reduced to CO2 or hydrocarbons under solar excitation, turns out to be a feasible method to solve the environmental emergency and energy shortage by reutilizing CO2 to fuels. As a result, it is very important to develop high-performance photocatalysts to enhance photocatalytic activity of CO2 conversion and further to understand the mechanism. Two-dimensional molybdenum disulfide (MoS2) not only has narrow and tunable band gap, bit its photocatalytic activity and hydrolization are also very similar to platinum (Pt), which makes it a suitable research candidate. On the other hand, a photocatalyst based on graphene has these advantages: high excellent electronic conductivity, large specific surface area, good optical transmittance, and superior chemical stability. Several researches have indicated that the characteristics of semiconductors can be changed with graphene hybrid. By analyzing the change of band gap and band position, we can have a better understanding of its mechanism and further enhancing the photocatalytic activity of CO2 reduction to solar fuels.
Several photocatalytic products of MoS2/graphene hybrid are detected by gas chromatograph (GC) system comparing with pure monolayer MoS2. Quantum efficiency (QE) performance of our hybrid material is about 6 times higher than pure monolayer MoS2., which makes it an outstanding contribution to the excellent photocatalytic CO2 reduction.
致謝 I
摘要 III
Abstract V
Contents VII
List of figures IX
List of tables XI
Chapter 1 Introduction 1
1.1 Global warming and CO2 emissions[1] 1
1.2 CO2 conversion 3
1.3 Criteria of semiconductors as photocatalyst 5
1.4 Photocatalytic ability of MoS2 in CO2 reduction 12
1.5 MoS2 fabrication 17
1.5.1 Top-down process 17
1.5.2 Chemical vapor deposition (CVD) process 19
1.5.2.1 Thermal vapor sulfurization (TVS) 19
1.5.2.2 Thermal vapor deposition (TVD) 22
1.5.2.3 CVD microreactor 26
1.6 Graphene 29
1.6.1 Graphene enhancement in photocatalyst 30
1.7 Motivation 34
Chapter 2 Experimental 38
2.1 Schematic of experimental process 38
2.2 Electrochemical polishing 40
2.3 Chemical vapor deposition growth 41
2.4 Graphene Transfer 43
2.5 Microreactor design for MoS2 fabrication 45
2.6 Photocatalytic CO2 reduction reaction 46
2.7 Micro-Raman and Photoluminescence spectroscopy 48
2.8 Atomic force microscopic 50
Chapter 3 Result and discussion 52
3.1 Graphene growth 52
3.1.1 Coverage analysis by optical microscope images 52
3.1.2 Surface diffusion with different pore sizes 54
3.1.3 Shaped graphene grown by different conditions 62
3.2 MoS2/graphene hybrid 64
3.2.1 Region-dependent Morphologies 64
3.2.2 Raman mapping of characteristic peaks 66
3.2.3 PL measurement 68
3.2.4 AFM images 70
3.3 Hypothesis of growth mechanism 71
3.4 Photocatalytical CO2 reduction 72
Chapter 4 Conclusion 74
Reference 76
[1]H.-C. Hsu, “Graphene Oxide Nanocomposites for Carbon Dioxide Photoreduction,” Jul. 2014.
[2]https://climate.nasa.gov/evidence/.
[3]M. Aresta and A. Dibenedetto, “Utilisation of CO2 as a chemical feedstock: opportunities and challenges,” Dalton Trans., vol. 17, no. 28, pp. 2975–18, 2007.
[4]J. P. Smol, “Climate Change: A planet in flux,” Nature, vol. 483, no. 7387, pp. S12–S15, 2012.
[5] https://en.wikipedia.org/wiki/Electrochemical_reduction_of_carbon_dioxide.
[6]S. Xie, Q. Zhang, G. Liu, and Y. Wang, “Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures,” Chemical Communications, vol. 52, pp. 35–59, Dec. 2015.
[7]Y. Izumi, “Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond,” Coordination Chemistry Reviews, vol. 257, no. 1, pp. 171–186, Jan. 2013.
[8]P. Usubharatana, D. McMartin, A. Veawab, and P. Tontiwachwuthikul, “Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams,” Ind. Eng. Chem. Res., vol. 45, no. 8, pp. 2558–2568, Apr. 2006.
[9]M. Tahir and N. S. Amin, “Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels,” ENERGY CONVERSION AND MANAGEMENT, vol. 76, no. C, pp. 1–21, Dec. 2013.
[10]Y. Li, Y.-L. Li, C. M. Araujo, W. Luo, and R. Ahuja, “Single-layer MoS2 as an efficient photocatalyst,” Catal. Sci. Technol., vol. 3, no. 9, pp. 2214–7, 2013.
[11]W. C. Chueh, C. Falter, M. Abbott, D. Scipio, and P. Furler, “High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria,” 2010.
[12]R. D. Richardson, E. J. Holland, and B. K. Carpenter, “A renewable amine for photochemical reduction of CO2,” Nature Chemistry, vol. 3, no. 4, pp. 301–303, Feb. 2011.
[13]W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang, and J. C. S. Wu, “A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis,” “Applied Catalysis B, Environmental,” vol. 132, pp. 445–451, Mar. 2013.
[14]J. D. Graham and N. I. Hammer, “Photocatalytic Water Splitting and Carbon Dioxide Reduction,” in Handbook of Climate Change Mitigation, no. 46, New York, NY: Springer US, 2012, pp. 1755–1780.
[15]T. Inoue, A. Fujishima, S. Konishi, and K. Honda, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders,” Nature, 1979.
[16]H. Xu, S. Ouyang, P. Li, T. Kako, and J. Ye, “High-Active Anatase TiO2 Nanosheets Exposed with 95% {100} Facets Toward Efficient H2 Evolution and CO2 Photoreduction,” ACS Appl. Mater. Interfaces, vol. 5, no. 4, pp. 1348–1354, Feb. 2013.
[17]Y. Wang, B. Li, C. Zhang, L. Cui, S. Kang, X. Li, and L. Zhou, “Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation,” “Applied Catalysis B, Environmental,” vol. 130, pp. 277–284, Feb. 2013.
[18]J. Núñez, V. A. de la Peña O'Shea, P. Jana, J. M. Coronado, and D. P. Serrano, “Effect of copper on the performance of ZnO and ZnO1−xNx oxides as CO2 photoreduction catalysts,” Catalysis Today, vol. 209, pp. 21–27, Jun. 2013.
[19]Y. Zhang, Y. Tang, X. Liu, Z. Dong, H. H. Hng, Z. Chen, T. C. Sum, and X. Chen, “Three-Dimensional CdS-Titanate Composite Nanomaterials for Enhanced Visible-Light-Driven Hydrogen Evolution,” Small, vol. 9, no. 7, pp. 996–1002, Dec. 2012.
[20]R. H. Coridan, M. Shaner, C. Wiggenhorn, B. S. Brunschwig, and N. S. Lewis, “Electrical and Photoelectrochemical Properties of WO3/Si Tandem Photoelectrodes,” J. Phys. Chem. C, vol. 117, no. 14, pp. 6949–6957, Apr. 2013.
[21]P. Praus, O. Kozák, K. Kočí, A. Panáček, and R. Dvorský, “CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide,” Journal of Colloid And Interface Science, vol. 360, no. 2, pp. 574–579, Aug. 2011.
[22]D. Finkelstein-Shapiro, S. H. Petrosko, N. M. Dimitrijevic, D. Gosztola, K. A. Gray, T. Rajh, P. Tarakeshwar, and V. Mujica, “CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles,” J. Phys. Chem. Lett., vol. 4, no. 3, pp. 475–479, Feb. 2013.
[23]B. Michalkiewicz, J. Majewska, G. Kądziołka, K. Bubacz, S. Mozia, and A. W. Morawski, “Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst,” Biochemical Pharmacology, vol. 5, pp. 47–52, Mar. 2014.
[24]S. S. Tan, L. Zou, and E. Hu, “Photosynthesis of hydrogen and methane as key components for clean energy system,” Science and Technology of Advanced Materials, vol. 8, no. 1, pp. 89–92, Jan. 2016.
[25]D. Liu, Y. Fernández, O. Ola, S. Mackintosh, M. Maroto-Valer, C. M. A. Parlett, A. F. Lee, and J. C. S. Wu, “On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2,” CATCOM, vol. 25, no. C, pp. 78–82, Aug. 2012.
[26]C. Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus, and C. Matranga, “Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts,” J. Mater. Chem., vol. 21, no. 35, pp. 13452–6, 2011.
[27]B. Chai, T. Peng, P. Zeng, and J. Mao, “Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light,” J. Mater. Chem., vol. 21, no. 38, pp. 14587–7, 2011.
[28]F. Lakadamyali and E. Reisner, “Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle,” Chemical Communications, vol. 47, no. 6, pp. 1695–4, 2011.
[29]O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, “High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels,” Nano Lett., vol. 9, no. 2, pp. 731–737, Feb. 2009.
[30]V. Singh, I. J. C. Beltran, J. C. Ribot, and P. Nagpal, “Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis,” Nano Lett., vol. 14, no. 2, pp. 597–603, Feb. 2014.
[31]K. Adachi, K. Ohta, and T. Mizuno, “Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide,” Solar Energy, vol. 53, no. 2, pp. 187–190, Aug. 1994.
[32]M. Subrahmanyam and S. Kaneco, “A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity,” Applied Catalysis B, vol. 23, no. 2, pp. 169–174, 1999.
[33]V. P. Indrakanti, J. D. Kubicki, and H. H. Schobert, “Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook,” Energy Environ. Sci., vol. 2, no. 7, pp. 745–14, 2009.
[34]J. C. S. Wu and H.-M. Lin, “Photo reduction of CO2 to methanol via TiO2 photocatalyst,” International Journal of Photoenergy, vol. 7, no. 3, pp. 115–119, 2005.
[35]T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale, and F. A. Armstrong, “CO2 photoreduction at enzyme-modified metal oxide nanoparticles,” Energy Environ. Sci., vol. 4, no. 7, pp. 2393–7, 2011.
[36]C.-C. Yang, J. Vernimmen, V. Meynen, P. Cool, and G. Mul, “Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15,” Journal of Catalysis, vol. 284, no. 1, pp. 1–8, Nov. 2011.
[37]K. Iizuka, T. Wato, Y. Miseki, K. Saito, and A. Kudo, “Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15(A = Ca, Sr, and Ba) Using Water as a Reducing Reagent,” J. Am. Chem. Soc., vol. 133, no. 51, pp. 20863–20868, Dec. 2011.
[38]X. Feng, J. D. Sloppy, T. J. LaTempa, M. Paulose, S. Komarneni, N. Bao, and C. A. Grimes, “Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide,” J. Mater. Chem., vol. 21, no. 35, pp. 13429–5, 2011.
[39]S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, “Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors,” Angew. Chem. Int. Ed., vol. 52, no. 29, pp. 7372–7408, Jun. 2013.
[40]A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B, vol. 83, no. 24, pp. 4059–4, Jun. 2011.
[41]Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, “High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes,” Science, 1995.
[42]M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, and M. Ceh, “Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes,” vol. 292, no. 5516, pp. 479–481, 2001.
[43]F. A. Frame and F. E. Osterloh, “CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light,” J. Phys. Chem. C, vol. 114, no. 23, pp. 10628–10633, Jun. 2010.
[44]Q. Xiang, J. Yu, and M. Jaroniec, “Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles,” J. Am. Chem. Soc., vol. 134, no. 15, pp. 6575–6578, Apr. 2012.
[45]Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, “MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction,” J. Am. Chem. Soc., vol. 133, no. 19, pp. 7296–7299, May 2011.
[46]M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, and F. Besenbacher, “One-Dimensional Metallic Edge States in MoS2,” Phys. Rev. Lett., vol. 87, no. 19, pp. 17–4, Oct. 2001.
[47]T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts,” Science, vol. 317, no. 5834, pp. 100–102, Jul. 2007.
[48]J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, “Trends in the Exchange Current for Hydrogen Evolution,” J. Electrochem. Soc., vol. 152, no. 3, pp. J23–4, 2005.
[49]B. Hinnemann, P. G. Moses, J. Bonde, K. P. J rgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. N rskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc., vol. 127, no. 15, pp. 5308–5309, Apr. 2005.
[50]D. D. Zhu, J. L. Liu, and S. Z. Qiao, “Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide,” Adv. Mater., vol. 28, no. 18, pp. 3423–3452, Mar. 2016.
[51]P. Joensen, R. F. Frindt, and S. R. Morrison, “Single-layer MoS2,” Materials research bulletin, vol. 21, pp. 457–461, Jan. 1986.
[52]J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” Science, vol. 331, no. 6017, pp. 568–571, Feb. 2011.
[53]Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, “Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication,” Angew. Chem. Int. Ed., vol. 50, no. 47, pp. 11093–11097, Oct. 2011.
[54]S. N. Heo, Y. Ishiguro, R. Hayakawa, T. Chikyow, and Y. Wakayama, “Perspective: Highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process,” APL Materials, vol. 4, no. 3, pp. 030901–8, Mar. 2016.
[55]Y.-K. Lin, “Surface and Interfacial Properties on CVD-grown MoS2: From Growth Control to Potential Applications,” Jul. 2016.
[56]Y. Lee, J. Lee, H. Bark, I.-K. Oh, G. H. Ryu, Z. Lee, H. Kim, J. H. Cho, J.-H. Ahn, and C. Lee, “Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor,” Nanoscale, vol. 6, no. 5, pp. 2821–6, 2014.
[57]Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, “Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate,” Small, vol. 8, no. 7, pp. 966–971, Feb. 2012.
[58]H. F. Liu, S. L. Wong, and D. Z. Chi, “CVD Growth of MoS2-based Two-dimensional Materials,” Chem. Vap. Deposition, vol. 21, no. 10, pp. 241–259, Nov. 2015.
[59]Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, “Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization,” Nanoscale, vol. 4, no. 20, pp. 6637–5, 2012.
[60]Y. Shi, H. Li, and L.-J. Li, “Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques,” Chemical Society Reviews, vol. 44, pp. 2744–2756, Apr. 2015.
[61]A. M. van der Zande, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nature Publishing Group, vol. 12, no. 6, pp. 554–561, May 2013.
[62]S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, “Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition,” Chem. Mater., vol. 26, no. 22, pp. 6371–6379, Nov. 2014.
[63]M. O'Brien, N. McEvoy, T. Hallam, H.-Y. Kim, N. C. Berner, D. Hanlon, K. Lee, J. N. Coleman, and G. S. Duesberg, “Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply,” Sci Rep, vol. 4, no. 1, pp. 183–7, Dec. 2014.
[64]H. Komiyama, Y. Shimogaki, and Y. Egashira, “Chemical reaction engineering in the design of CVD reactors,” Chemical Engineering Science, vol. 54, no. 13, pp. 1941–1957, Jul. 1999.
[65]A. Chen and Z. Krivokapic, “Sidewall graphene devices for 3-D electronics,” US 7,993,986 B2, 09-Aug-2011.
[66]Z. Krivokapic and B. Sahu, “FinFET device with a graphene gate electrode and methods of forming same ,” US 8,815,739 B2, 26-Aug-2014.
[67]Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, Conductive Carbon Nanotube Films,” Science, vol. 305, no. 5688, pp. 1273–1276, Aug. 2004.
[68]Z.-Y. Yang, L.-J. Jin, G.-Q. Lu, Q.-Q. Xiao, Y.-X. Zhang, L. Jing, X.-X. Zhang, Y.-M. Yan, and K.-N. Sun, “Sponge-Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance,” Adv. Funct. Mater., vol. 24, no. 25, pp. 3917–3925, Mar. 2014.
[69]X. Xu, L. Pan, Y. Liu, T. Lu, Z. Sun, and D. H. C. Chua, “Facile synthesis of novel graphene sponge for high performance capacitive deionization,” Sci Rep, vol. 5, no. 1, pp. 3917–9, Feb. 2015.
[70]Bong, H., Jo, S. B., Kang, B., Lee, S. K., Kim, H. H., Lee, S. G., & Cho, K., “Graphene growth under Knudsen molecular flow on a confined catalytic metal coil,” Nanoscale, vol. 7, pp. 1314–1324, Dec. 2014.
[71]J. Low, J. Yu, and W. Ho, “Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel,” J. Phys. Chem. Lett., vol. 6, no. 21, pp. 4244–4251, Nov. 2015.
[72]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, no. 5932, pp. 1312–1314, Jun. 2009.
[73]J. Yu, J. Jin, B. Cheng, and M. Jaroniec, “A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel,” J. Mater. Chem. A, vol. 2, no. 10, pp. 3407–10, 2014.
[74]X. An, K. Li, and J. Tang, “Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2,” ChemSusChem, vol. 7, no. 4, pp. 1086–1093, Feb. 2014.
[75]P.-Q. Wang, Y. Bai, P.-Y. Luo, and J.-Y. Liu, “Graphene–WO3 nanobelt composite: Elevated conduction band toward photocatalytic reduction of CO2 into hydrocarbon fuels,” CATCOM, vol. 38, no. C, pp. 82–85, Aug. 2013.
[76]D. Chen, H. Zhang, Y. Liu, and J. Li, “Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications,” Energy Environ. Sci., vol. 6, no. 5, pp. 1362–26, 2013.
[77]Y. P. Hsieh, C. H. Shih, Y. J. Chiu, and M. Hofmann, “High-throughput graphene synthesis in gapless stacks,” Chem. Mater., 2015.
[78]A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature, vol. 499, no. 7459, pp. 419–425, Jul. 2013.
[79]Y. Li, Z. Qi, M. Liu, Y. Wang, X. Cheng, G. Zhang, and L. Sheng, “Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates,” Nanoscale, vol. 6, no. 24, pp. 15248–15254, Oct. 2014.
[80]Y.-K. Lin, R.-S. Chen, T.-C. Chou, Y.-H. Lee, Y.-F. Chen, K.-H. Chen, and L.-C. Chen, “Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition,” ACS Appl. Mater. Interfaces, vol. 8, no. 34, pp. 22637–22646, Aug. 2016.
[81]L. S. Hong, Y. Shimogaki, and H. Komjyama, “Macro/microcavity method and its application in modeling chemical vapor deposition reaction systems,” Thin Solid Films, 2000.
[82]M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat Mater, vol. 5, no. 2, pp. 102–106, Jan. 2006.
[83]K. Watanabe and H. Komiyama, “Micro/Macrocavity Method Applied to the Study of the Step Coverage Formation Mechanism of SiO2 Films by LPCVD,” J. Electrochem. Soc., vol. 137, no. 4, pp. 1222–1227, Apr. 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊