跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李珣
研究生(外文):Hsun Li
論文名稱:Study of the Golgi Outpost-localized Proteins Fringe and Lrrk in Dendrite Arborization
論文名稱(外文):Study of the Golgi Outpost-localized Proteins Fringe and Lrrk in Dendrite Arborization
指導教授:簡正鼎簡正鼎引用關係蔡金吾
指導教授(外文):Cheng-Ting ChienJin-Wu Tsai
學位類別:博士
校院名稱:國立陽明大學
系所名稱:跨領域神經科學國際研究生博士學位學程
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:114
外文關鍵詞:Golgi outpostdendrite arborizationFringeLrrk
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Dendrite arborization is crucial for the function of neuron, and the dendritic morphology is known to be regulated by many intrinsic and extrinsic factors exquisitely. Among the known factors, Golgi outposts (GOPs) are specialized organelle found in neuron, and disperse in the extensive dendrite region. GOP is thought to be similar to the conventional Golgi complex, since GOP retains multi-cisternae stacks and several proteins localize in Golgi complex originally. Furthermore, accumulative evidences imply the functional role of GOPs in dendrite arborization, such as being the acentrosomal site for microtubule nucleation. Referring to the various function of Golgi complex, it has been postulated that GOPs might also serve as the multi-functional platforms in dendrite. However, whether GOPs are responsible for multiple functions in dendrite arborization is remained elusive. In a candidate-based screen, we found that Fringe (Fng), the Drosophila beta-1,3-N-acetylglucosaminyltransferase, resided to a subset of GOPs in class IV dendritic arborization (C4da) neuron of Drosophila larva. In addition, while Fng increased propagation onto dendritic GOPs in the later development stage of C4da neuron, collateral increase of dendrite retraction happened to C4da neuron concomitantly. Therefore, the results indicate a novel function of Fng-localized GOPs (Fng+-GOPs) in deviating dendrite dynamics from the outgrowing to retracting state. Regarding that Notch (N) is the known substrate glycosylated by Fng, we geared to examine whether N was the effector mediating function of fng in dendrite arborization. The results showed that fng and N functioned in suppressing dendrite arborization. Correspondingly, the level of Fng reversely correlated with actin dynamics in dendrite. Presumptively, enhanced N signaling, which depended on Fng, might be responsible for altering actin dynamics and eventually cause retracting state of dendrite branches. Concomitantly, elevated expression of ligand Dl for N was found in the juxtaposed epidermal cells close to C4da neuron in the later larval development stage. Thus, epidermal Dl might elicit the N signaling in C4da neuron. Furthermore, we also found that the abundance of Fng+-GOPs in dendrites was negatively correlated with level of Furin 2 (Fur2), which belongs to the conserved proprotein convertase protein family known to cleave mammalian Fringes. Hence, the results imply that Fur2 is responsible for modulating the amount of dendritic Fng+-GOPs. Thus, a novel function of GOPs is proposed that GOPs serve as a venue for Fur2, Fng, N functioning coordinately to alter the dendrite dynamics of neuron.
Furthermore, for the dynamic profiles of GOPs, we found that Leucine-rich repeat kinase (Lrrk) would disrupt the coupling between GOP and its adaptor protein Lava lamp (Lav), and thus hinder the dynein-based transportation of GOPs. This mechanistic interaction between Lrrk and Lav highly depends on the kinase activity of Lrrk. Eventually, disrupted dynamic profiles of GOPs cause aberrant dendrite arborization of C4da neuron. Meanwhile, the mammalian homologue of Lrrk is Leucine-Rich Repeat Kinase 2 (LRRK2), which is the Parkinson’s disease related gene because of the known pathological mutations of LRRK2, such as kinase activated mutation LRRK2-G2019S. In this study, our results show that mutated LRRK2-G2019S has higher kinase activity and endows similar molecular mechanism to affect the dynamic profiles of GOPs, and LRRK2-G2019S also deteriorated the dendrite arborization. Therefore, we find that Lrrk is the negative regulator for the GOPs dynamics, and the abnormal GOPs dynamic profile caused by LRRK2-G2019S might be part of the neuronal pathology in Parkinson’s disease.
Taken together, in this study, unknown characteristic properties and functions of GOPs in neuron are revealed, and this study shows that both heterogeneous contents and dynamics of GOPs are correlated to dendrite arborization. Therefore, GOPs are indeed pluripotent with versatile functions and significantly involved in dendrite arborization.
Acknowledgments ......i
Abstract......ii
Contents......iv
List of Figures......vi
Chapter 1 Introduction......1
1.1 Dendrite is specialized structure and important for functions of neuron......1
1.2 Class IV dendritic arborization neuron of Drosophila larva as the model for studying dendrite......2
1.3 GOP is presumptive complement for satellite secretory pathway in dendrite......4
1.4 Correlation between GOPs and dendrite arborization......4
1.5 Known contents of GOPs......6
1.6 Fringe is the glycosyltransferase, but the function in dendrite is unknown......7
1.7 Furin 2 is the probable regulator for Fng in dendrite, yet the function is unclear......9
1.8 N is glycosylated by Fng, yet whether it is involved in dendrite arborization is unclear......10
1.9 GOP dynamics and a presumptive regulator, Lrrk, for it......12
1.10 This study is aimed for the unknown functions of GOPs in dendrite arborization......13
Chapter 2 Materials and methods......14
2.1 Fly strains......14
2.2 Collecting Drosophila larva at partitioned stages during development......17
2.3 Image acquisition......17
2.4 Image processing and Data analysis......20
Chapter 3 Results I - Fringe, beta-1,3-N-acetlyglucosaminyltransferase, -localized Golgi outposts in dendrite retraction......25
3.1 Transition of terminal dendrite dynamics during third instar larval stages......25
3.2 Constant GOP distributions in C4da dendrites in three larval stages......26
3.3 FNG localizes at the Golgi structures in C4da neurons......27
3.4 Restricted distribution of Fng-positive GOPs to proximal dendrite branches in E3 stage......28
3.5 Fng functions in suppressing dendrite arborization......30
3.6 Delta and Notch function in dendrite retraction......31
3.7 Fng regulates actin blob dynamics in dendrite......33
3.8 Furin 2 regulates Fng localization at dendritic GOPs......34
Chapter 4 Results II - Lrrk regulates the dynamic profile of dendritic Golgi outposts through the golgin Lava lamp......38
4.1 Lrrk regulates the pool size of stationary GOPs......38
4.2 Lrrk suppresses anterograde movement of GOPs......39
4.3 Lrrk suppresses dendrite dynamics......41
4.4 Lrrk kinase activity is required in regulating GOP dynamics and dendrite arborization......41
4.5 Lrrk2 G2019S mutation enhances retrograde transport of GOPs......43
4.6 wls is required for dendrite self-avoidance in Drosophila C4da neurons......44
Chapter 5 Discussion......45
5.1 Heterogeneous GOPs in dendrite are responsible for multiple functions......45
5.2 GOPs are involved in affecting dendrite dynamics......47
5.3 Fng and N are involved in dendrite arborization cooperatively......49
5.4 Spatiotemporal characters of Dl for regulating dendrite arborization......51
5.5 Fur2 regulates Fng localized on GOPs and dendrite arborization......52
5.6 GOP might serve as platform for molecules function locally in dendrite arborization......54
5.7 Lrrk reduces mobility of GOPs and change the dynamic profiles of GOPs......55
5.8 Lrrk affects GOPs distributions and suppresses dendrite arborization......57
5.9 LRRK2 mutant G2019S increases retrograde GOPs and suppresses dendrite arborization......57
References......107
Ainsley, J.A., M.J. Kim, L.J. Wegman, J.M. Pettus, and W.A. Johnson. 2008. Sensory mechanisms controlling the timing of larval developmental and behavioral transitions require the Drosophila DEG/ENaC subunit, Pickpocket1. Developmental biology. 322:46-55.
Amarneh, B., K.A. Matthews, and R.B. Rawson. 2009. Activation of Sterol Regulatory Element-binding Protein by the Caspase Drice in Drosophila Larvae. Journal of Biological Chemistry. 284:9674-9682.
Andersson, E.R., R. Sandberg, and U. Lendahl. 2011. Notch signaling: simplicity in design, versatility in function. Development. 138:3593.
Bodmer, R., and Y.N. Jan. 1987. Morphological differentiation of the embryonic peripheral neurons in Drosophila. Roux's archives of developmental biology. 196:69-77.
Bray, S.J. 2006. Notch signalling: a simple pathway becomes complex. Nature reviews. Molecular cell biology. 7:678-689.
Bray, S.J. 2016. Notch signalling in context. Nature Reviews Molecular Cell Biology. 17:722.
Breunig, J.J., J. Silbereis, F.M. Vaccarino, N. Sestan, and P. Rakic. 2007a. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America. 104:20558-20563.
Breunig, J.J., J. Silbereis, F.M. Vaccarino, N. Šestan, and P. Rakic. 2007b. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proceedings of the National Academy of Sciences. 104:20558.
Brown, H.E., T. Desai, A.J. Murphy, H. Pancholi, Z.W. Schmidt, H. Swahn, and E.C. Liebl. 2017. The function of Drosophila larval class IV dendritic arborization sensory neurons in the larval-pupal transition is separable from their function in mechanical nociception responses. PloS one. 12:e0184950-e0184950.
Bruckner, K., L. Perez, H. Clausen, and S. Cohen. 2000. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature. 406:411-415.
Chen, Y., D.C. Gershlick, S.Y. Park, and J.S. Bonifacino. 2017. Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers. The Journal of cell biology. 216:4141-4151.
Cho, K.O., and K.W. Choi. 1998. Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature. 396:272-276.
Conde, C., and A. Cáceres. 2009. Microtubule assembly, organization and dynamics in axons and dendrites. Nature Reviews Neuroscience. 10:319.
Correia, T., V. Papayannopoulos, V. Panin, P. Woronoff, J. Jiang, T.F. Vogt, and K.D. Irvine. 2003a. Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila. Proceedings of the National Academy of Sciences. 100:6404-6409.
Correia, T., V. Papayannopoulos, V. Panin, P. Woronoff, J. Jiang, T.F. Vogt, and K.D. Irvine. 2003b. Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 100:6404-6409.
Corty, M.M., B.J. Matthews, and W.B. Grueber. 2009. Molecules and mechanisms of dendrite development in Drosophila. Development (Cambridge, England). 136:1049-1061.
Cui-Wang, T., C. Hanus, T. Cui, T. Helton, J. Bourne, D. Watson, K.M. Harris, and M.D. Ehlers. 2012. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell. 148:309-321.
De Bellard, M.E., M. Barembaum, O. Arman, and M. Bronner-Fraser. 2007. Lunatic fringe causes expansion and increased neurogenesis of trunk neural tube and neural crest populations. Neuron glia biology. 3:93-103.
De Bie, I., D. Savaria, A.J. Roebroek, R. Day, C. Lazure, W.J. Van de Ven, and N.G. Seidah. 1995a. Processing specificity and biosynthesis of the Drosophila melanogaster convertases dfurin1, dfurin1-CRR, dfurin1-X, and dfurin2. The Journal of biological chemistry. 270:1020-1028.
De Bie, I., D. Savaria, A.J.M. Roebroek, R. Day, C. Lazure, W.J.M. Van de Ven, and N.G. Seidah. 1995b. Processing Specificity and Biosynthesis of the Drosophila melanogaster Convertases dfurin1, dfurin1-CRR, dfurin1-X, and dfurin2. Journal of Biological Chemistry. 270:1020-1028.
de Celis, J.F., and S.J. Bray. 2000. The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development. 127:1291-1302.
del Álamo, D., H. Rouault, and F. Schweisguth. 2011. Mechanism and Significance of cis-Inhibition in Notch Signalling. Current Biology. 21:R40-R47.
Dong, X., K. Shen, and H.E. Bulow. 2015. Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annual review of physiology. 77:271-300.
Ehlers, M.D. 2013. Dendritic trafficking for neuronal growth and plasticity. Biochemical Society transactions. 41:1365-1382.
Ferreira, T., Y. Ou, S. Li, E. Giniger, and D.J. van Meyel. 2014. Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire. Development. 141:650-660.
Fleming, R.J., Y. Gu, and N.A. Hukriede. 1997. Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development. 124:2973-2981.
Fuger, P., L.B. Behrends, S. Mertel, S.J. Sigrist, and T.M. Rasse. 2007. Live imaging of synapse development and measuring protein dynamics using two-color fluorescence recovery after photo-bleaching at Drosophila synapses. Nature protocols. 2:3285-3298.
Gao, F.B., J.E. Brenman, L.Y. Jan, and Y.N. Jan. 1999. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes & development. 13:2549-2561.
Giniger, E. 1998. A Role for Abl in Notch Signaling. Neuron. 20:667-681.
Giniger, E. 2012. Notch signaling and neural connectivity. Current opinion in genetics & development. 22:339-346.
Giniger, E., L.Y. Jan, and Y.N. Jan. 1993. Specifying the path of the intersegmental nerve of the Drosophila embryo: a role for Delta and Notch. Development. 117:431-440.
Gorczyca, David A., S. Younger, S. Meltzer, Sung E. Kim, L. Cheng, W. Song, Hye Y. Lee, Lily Y. Jan, and Yuh N. Jan. 2014. Identification of Ppk26, a DEG/ENaC Channel Functioning with Ppk1 in a Mutually Dependent Manner to Guide Locomotion Behavior in Drosophila. Cell reports. 9:1446-1458.
Gratz, S.J., A.M. Cummings, J.N. Nguyen, D.C. Hamm, L.K. Donohue, M.M. Harrison, J. Wildonger, and K.M. O’Connor-Giles. 2013. Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease. Genetics. 194:1029-1035.
Grueber, W.B., L.Y. Jan, and Y.N. Jan. 2002. Tilling of the Drosophila epidermis by multidendritic sensory neurons. Development. 129:13.
Grueber, W.B., and Y.N. Jan. 2004. Dendritic development: lessons from Drosophila and related branches. Current opinion in neurobiology. 14:74-82.
Grueber, W.B., B. Ye, A.W. Moore, L.Y. Jan, and Y.N. Jan. 2003. Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion. Current Biology. 13:618-626.
Grueber, W.B., B. Ye, C.-H. Yang, S. Younger, K. Borden, L.Y. Jan, and Y.-N. Jan. 2007. Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development. 134:55-64.
Gutierrez, H., V.A. Hale, X. Dolcet, and A. Davies. 2005. NF-kappaB signalling regulates the growth of neural processes in the developing PNS and CNS. Development. 132:1713-1726.
Haines, N., and K.D. Irvine. 2003. Glycosylation regulates Notch signalling. Nature Reviews Molecular Cell Biology. 4:786.
Haltiwanger, R.S. 2014. Fringe (UDP-GlcNAc: O-Fucosylpeptide ß1,3 N-Acetylglucosaminyltransferase). In Handbook of Glycosyltransferases and Related Genes. N. Taniguchi, K. Honke, M. Fukuda, H. Narimatsu, Y. Yamaguchi, and T. Angata, editors. Springer Japan, Tokyo. 265-274.
Han, C., D. Wang, P. Soba, S. Zhu, X. Lin, L.Y. Jan, and Y.N. Jan. 2012. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron. 73:64-78.
Hanus, C., and M.D. Ehlers. 2008. Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic. 9:1437-1445.
Harvey, B.M., N.A. Rana, H. Moss, J. Leonardi, H. Jafar-Nejad, and R.S. Haltiwanger. 2016. Mapping Sites of O-Glycosylation and Fringe Elongation on Drosophila Notch. Journal of Biological Chemistry. 291:16348-16360.
Horton, A.C., and M.D. Ehlers. 2003. Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. The Journal of Neuroscience. 23:12.
Horton, A.C., B. Racz, E.E. Monson, A.L. Lin, R.J. Weinberg, and M.D. Ehlers. 2005. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron. 48:757-771.
Imai, Y., S. Gehrke, H.Q. Wang, R. Takahashi, K. Hasegawa, E. Oota, and B. Lu. 2008. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27:2432-2443.
Irvine, K.D., and E. Wieschaus. 1994. fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell. 79:595-606.
Iyer, E.P., S.C. Iyer, L. Sullivan, D. Wang, R. Meduri, L.L. Graybeal, and D.N. Cox. 2013. Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning. PloS one. 8:e72434.
Jafar-Nejad, H., J. Leonardi, and R. Fernandez-Valdivia. 2010. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology. 20:931-949.
Jan, Y.N., and L.Y. Jan. 2010. Branching out: mechanisms of dendritic arborization. Nature reviews. Neuroscience. 11:316-328.
Jeyifous, O., C.L. Waites, C.G. Specht, S. Fujisawa, M. Schubert, E.I. Lin, J. Marshall, C. Aoki, T. de Silva, J.M. Montgomery, C.C. Garner, and W.N. Green. 2009. SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nature neuroscience. 12:1011-1019.
Jiang, N., P. Soba, E. Parker, C.C. Kim, and J.Z. Parrish. 2014. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth. Development. 141:2657-2668.
Johnston, S.H., C. Rauskolb, R. Wilson, B. Prabhakaran, K.D. Irvine, and T.F. Vogt. 1997. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development. 124:2245-2254.
Kelley, M.R., S. Kidd, W.A. Deutsch, and M.W. Young. 1987. Mutations altering the structure of epidermal growth factor-like coding sequences at the Drosophila Notch locus. Cell. 51:539-548.
Kelliher, M.T., Y. Yue, A. Ng, D. Kamiyama, B. Huang, K.J. Verhey, and J. Wildonger. 2018. Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts. The Journal of cell biology. 217:2531.
Kim, M.E., B.R. Shrestha, R. Blazeski, C.A. Mason, and W.B. Grueber. 2012. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron. 73:79-91.
Klein, T., and A.M. Arias. 1998. Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development. Development. 125:2951-2962.
Kopan, R., and M.X. Ilagan. 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 137:216-233.
Kuo, C.T., L.Y. Jan, and Y.N. Jan. 2005. Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proceedings of the National Academy of Sciences of the United States of America. 102:15230-15235.
Kuzina, I., J. K Song, and E. Giniger. 2011. How Notch establishes longitudinal axon connections between successive segments of the Drosophila CNS. 1839-1849 pp.
Laufer, E., R. Dahn, O.E. Orozco, C.Y. Yeo, J. Pisenti, D. Henrique, U.K. Abbott, J.F. Fallon, and C. Tabin. 1997. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature. 386:366-373.
LeBon, L., T.V. Lee, D. Sprinzak, H. Jafar-Nejad, and M.B. Elowitz. 2014. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. Elife. 3:e02950.
Lei, L., A. Xu, V.M. Panin, and K.D. Irvine. 2003. An O-fucose site in the ligand binding domain inhibits Notch activation. Development. 130:6411-6421.
Li, T.R., and K.P. White. 2003. Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila. Developmental cell. 5:59-72.
Liao, C.P., H. Li, H.H. Lee, C.T. Chien, and C.L. Pan. 2018. Cell-Autonomous Regulation of Dendrite Self-Avoidance by the Wnt Secretory Factor MIG-14/Wntless. Neuron. 98:320-334 e326.
Lin, C.H., H. Li, Y.N. Lee, Y.J. Cheng, R.M. Wu, and C.T. Chien. 2015. Lrrk regulates the dynamic profile of dendritic Golgi outposts through the golgin Lava lamp. The Journal of cell biology. 210:471-483.
Lin, C.H., P.I. Tsai, R.M. Wu, and C.T. Chien. 2010a. LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ss. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30:13138-13149.
Lin, C.H., P.I. Tsai, R.M. Wu, and C.T. Chien. 2010b. LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ss. J. Neurosci. 30:13138-13149.
Martínez-Cerdeño, V. 2017. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Developmental neurobiology. 77:393-404.
McGrew, M.J., J.K. Dale, S. Fraboulet, and O. Pourquie. 1998. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Current biology : CB. 8:979-982.
Meltzer, S., S. Yadav, J. Lee, P. Soba, S.H. Younger, P. Jin, W. Zhang, J. Parrish, L.Y. Jan, and Y.N. Jan. 2016. Epidermis-Derived Semaphorin Promotes Dendrite Self-Avoidance by Regulating Dendrite-Substrate Adhesion in Drosophila Sensory Neurons. Neuron. 89:741-755.
Mikhaylova, M., S. Bera, O. Kobler, R. Frischknecht, and M.R. Kreutz. 2016. A Dendritic Golgi Satellite between ERGIC and Retromer. Cell reports. 14:189-199.
Moloney, D.J., V.M. Panin, S.H. Johnston, J. Chen, L. Shao, R. Wilson, Y. Wang, P. Stanley, K.D. Irvine, R.S. Haltiwanger, and T.F. Vogt. 2000a. Fringe is a glycosyltransferase that modifies Notch. Nature. 406:369-375.
Moloney, D.J., V.M. Panin, S.H. Johnston, J.H. Chen, L. Shao, R. Wilson, Y. Wang, P. Stanley, K.D. Irvine, R.S. Haltiwanger, and T.F. Vogt. 2000b. Fringe is a glycosyltransferase that modifies Notch. Nature. 406:369-375.
Munro, S. 2011. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harbor perspectives in biology. 3.
Munro, S., and M. Freeman. 2000. The Notch signalling regulator Fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DxD. Current Biology. 10:813-820.
Nguyen, M.M., C.J. McCracken, E.S. Milner, D.J. Goetschius, A.T. Weiner, M.K. Long, N.L. Michael, S. Munro, and M.M. Rolls. 2014. gamma-Tubulin controls neuronal microtubule polarity independently of Golgi outposts. Molecular biology of the cell. 25:2039-2050.
Nithianandam, V., and C.-T. Chien. 2018. Actin blobs prefigure dendrite branching sites. The Journal of cell biology. 217:3731.
Ori-McKenney, K.M., L.Y. Jan, and Y.N. Jan. 2012. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron. 76:921-930.
Ou, Q., and K. King-Jones. 2013. Chapter Two - What Goes Up Must Come Down: Transcription Factors Have Their Say in Making Ecdysone Pulses. In Current topics in developmental biology. Vol. 103. Y.-B. Shi, editor. Academic Press. 35-71.
Panin, V.M., V. Papayannopoulos, R. Wilson, and K.D. Irvine. 1997. Fringe modulates Notch–ligand interactions. Nature. 387:908.
Panin, V.M., L. Shao, L. Lei, D.J. Moloney, K.D. Irvine, and R.S. Haltiwanger. 2002. Notch Ligands are substrates for protein O-fucosyltransferase-1 and fringe. Journal of Biological Chemistry. 277:29945-29952.
Papoulas, O., T.S. Hays, and J.C. Sisson. 2005. The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nature cell biology. 7:612-618.
Parrish, J.Z., K. Emoto, M.D. Kim, and Y.N. Jan. 2007. Mechanisms that Regulate Establishment, Maintenance, and Remodeling of Dendritic Fields. Annual review of neuroscience. 30:399-423.
Parrish, J.Z., M.D. Kim, L.Y. Jan, and Y.N. Jan. 2006. Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes & development. 20:820-835.
Parrish, J.Z., P. Xu, C.C. Kim, L.Y. Jan, and Y.N. Jan. 2009. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons. Neuron. 63:788-802.
Patt, S., H.J. Gertz, L. Gerhard, and J. Cervos-Navarro. 1991. Pathological changes in dendrites of substantia nigra neurons in Parkinson's disease: a Golgi study. Histology and histopathology. 6:373-380.
Penney, J., K. Tsurudome, E.H. Liao, G. Kauwe, L. Gray, A. Yanagiya, M. R. Calderon, N. Sonenberg, and A.P. Haghighi. 2016. LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nature communications. 7:12188.
Pierce, J.P., T. Mayer, and J.B. McCarthy. 2001. Evidence for a satellite secretory pathway in neuronal dendritic spines. Current biology : CB. 11:351-355.
Poe, A.R., L. Tang, B. Wang, Y. Li, M.L. Sapar, and C. Han. 2017. Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila. Proceedings of the National Academy of Sciences. 114:E8062.
Pulipparacharuvil, S., M.A. Akbar, S. Ray, E.A. Sevrioukov, A.S. Haberman, J. Rohrer, and H. Krämer. 2005. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. Journal of cell science. 118:3663-3673.
Puram, S.V., and A. Bonni. 2013. Cell-intrinsic drivers of dendrite morphogenesis. Development. 140:4657-4671.
Quassollo, G., J. Wojnacki, D.A. Salas, L. Gastaldi, M.P. Marzolo, C. Conde, M. Bisbal, A. Couve, and A. Caceres. 2015. A RhoA Signaling Pathway Regulates Dendritic Golgi Outpost Formation. Current biology : CB. 25:971-982.
Rancourt, S.L., and D.E. Rancourt. 1997. Murine subtilisin-like proteinase SPC6 is expressed during embryonic implantation, somitogenesis, and skeletal formation. Developmental genetics. 21:75-81.
Rayburn, L.Y., H.C. Gooding, S.P. Choksi, D. Maloney, A.R. Kidd, 3rd, D.E. Siekhaus, and M. Bender. 2003. amontillado, the Drosophila homolog of the prohormone processing protease PC2, is required during embryogenesis and early larval development. Genetics. 163:227-237.
Redmond, L., and A. Ghosh. 2001. The role of Notch and Rho GTPase signaling in the control of dendritic development. Current opinion in neurobiology. 11:111-117.
Redmond, L., S.R. Oh, C. Hicks, G. Weinmaster, and A. Ghosh. 2000. Nuclear Notch1 signaling and the regulation of dendritic development. Nature neuroscience. 3:30-40.
Renn, S.C.P., B. Tomkinson, and P.H. Taghert. 1998. Characterization and Cloning of Tripeptidyl Peptidase II from the Fruit Fly, Drosophila melanogaster. Journal of Biological Chemistry. 273:19173-19182.
Roebroek, A.J., T.A. Ayoubi, J.W. Creemers, I.G. Pauli, and W.J. Van de Ven. 1995. The Dfur2 gene of Drosophila melanogaster: genetic organization, expression during embryogenesis, and pro-protein processing activity of its translational product Dfurin2. DNA Cell Biol. 14:223-234.
Roebroek, A.J., J.W. Creemers, I.G. Pauli, U. Kurzik-Dumke, M. Rentrop, E.A. Gateff, J.A. Leunissen, and W.J. Van de Ven. 1992. Cloning and functional expression of Dfurin2, a subtilisin-like proprotein processing enzyme of Drosophila melanogaster with multiple repeats of a cysteine motif. The Journal of biological chemistry. 267:17208-17215.
Satoh, A., F. Tokunaga, S. Kawamura, and K. Ozaki. 1997. In situ inhibition of vesicle transport and protein processing in the dominant negative Rab1 mutant of Drosophila. Journal of cell science. 110 ( Pt 23):2943-2953.
Selva, E.M., K. Hong, G.H. Baeg, S.M. Beverley, S.J. Turco, N. Perrimon, and U. Hacker. 2001. Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nature cell biology. 3:809-815.
Semerci, F., W.T.-S. Choi, A. Bajic, A. Thakkar, J.M. Encinas, F. Depreux, N. Segil, A.K. Groves, and M. Maletic-Savatic. 2017. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance. eLife. 6:e24660.
Serth, K., K. Schuster-Gossler, R. Cordes, and A. Gossler. 2003. Transcriptional oscillation of lunatic fringe is essential for somitogenesis. Genes & development. 17:912-925.
Shao, L., D.J. Moloney, and R. Haltiwanger. 2003. Fringe Modifies O-Fucose on Mouse Notch1 at Epidermal Growth Factor-like Repeats within the Ligand-binding Site and the Abruptex Region. Journal of Biological Chemistry. 278:7775-7782.
Shifley, E.T., and S.E. Cole. 2008. Lunatic fringe protein processing by proprotein convertases may contribute to the short protein half-life in the segmentation clock. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1783:2384-2390.
Shingleton, A.W., J. Das, L. Vinicius, and D.L. Stern. 2005. The temporal requirements for insulin signaling during development in Drosophila. PLoS biology. 3:e289.
Sparrow, D.B., G. Chapman, M.A. Wouters, N.V. Whittock, S. Ellard, D. Fatkin, P.D. Turnpenny, K. Kusumi, D. Sillence, and S.L. Dunwoodie. 2006. Mutation of the LUNATIC FRINGE Gene in Humans Causes Spondylocostal Dysostosis with a Severe Vertebral Phenotype. The American Journal of Human Genetics. 78:28-37.
Spruston, N. 2009. Dendritic Signal Integration. In Encyclopedia of Neuroscience. L.R. Squire, editor. Academic Press, Oxford. 445-452.
Stanley, P., and T. Okajima. 2010. Chapter Four - Roles of Glycosylation in Notch Signaling. In Current topics in developmental biology. Vol. 92. R. Kopan, editor. Academic Press. 131-164.
Stone, M.C., F. Roegiers, and M.M. Rolls. 2008. Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Molecular biology of the cell. 19:4122-4129.
Sturtevant, M.A., M. Roark, and E. Bier. 1993. The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes & development. 7:961-973.
Takeuchi, H., and R.S. Haltiwanger. 2010. Role of glycosylation of Notch in development. Semin Cell Dev Biol. 21:638-645.
Takeuchi, H., and R.S. Haltiwanger. 2014. Significance of glycosylation in Notch signaling. Biochemical and biophysical research communications. 453:235-242.
Terada, S.-I., D. Matsubara, K. Onodera, M. Matsuzaki, T. Uemura, and T. Usui. 2016. Neuronal processing of noxious thermal stimuli mediated by dendritic Ca(2+) influx in Drosophila somatosensory neurons. eLife. 5:e12959.
Thomas, G.B., and D.J. van Meyel. 2007. The glycosyltransferase Fringe promotes Delta-Notch signaling between neurons and glia, and is required for subtype-specific glial gene expression. Development. 134:591-600.
Toyoda, H., A. Kinoshita-Toyoda, B. Fox, and S.B. Selleck. 2000. Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. The Journal of biological chemistry. 275:21856-21861.
Valnegri, P., S.V. Puram, and A. Bonni. 2015. Regulation of dendrite morphogenesis by extrinsic cues. Trends in neurosciences. 38:439-447.
West, M.J., C.H. Kawas, W.F. Stewart, G.L. Rudow, and J.C. Troncoso. 2004. Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiology of Aging. 25:1205-1212.
Wiggins, C.A.R., and S. Munro. 1998. Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proceedings of the National Academy of Sciences. 95:7945-7950.
Williams, D.W., and D. Shepherd. 1999. Persistent larval sensory neurons in adult Drosophila melanogaster. Journal of neurobiology. 39:275-286.
Williams, D.W., and J.W. Truman. 2005. Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development. 132:3631-3642.
Woehlke, G., and M. Schliwa. 2000. Walking on two heads: the many talents of kinesin. Nature Reviews Molecular Cell Biology. 1:50.
Xiang, Y., Q. Yuan, N. Vogt, L.L. Looger, L.Y. Jan, and Y.N. Jan. 2010. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature. 468:921-926.
Xu, A., N. Haines, M. Dlugosz, N.A. Rana, H. Takeuchi, R.S. Haltiwanger, and K.D. Irvine. 2007. In vitro reconstitution of the modulation of Drosophila Notch-ligand binding by Fringe. The Journal of biological chemistry. 282:35153-35162.
Xu, A., L. Lei, and K.D. Irvine. 2005. Regions of Drosophila Notch That Contribute to Ligand Binding and the Modulatory Influence of Fringe. Journal of Biological Chemistry. 280:30158-30165.
Xu, K., E. Nieuwenhuis, B.L. Cohen, W. Wang, A.J. Canty, J.S. Danska, L. Coultas, J. Rossant, M.Y. Wu, T.D. Piscione, A. Nagy, A. Gossler, G.G. Hicks, C.C. Hui, R.M. Henkelman, L.X. Yu, J.G. Sled, T. Gridley, and S.E. Egan. 2010. Lunatic Fringe-mediated Notch signaling is required for lung alveogenesis. American journal of physiology. Lung cellular and molecular physiology. 298:L45-56.
Yadav, S., and A.D. Linstedt. 2011. Golgi positioning. Cold Spring Harbor perspectives in biology. 3.
Yamamoto, S., W.-L. Charng, N.A. Rana, S. Kakuda, M. Jaiswal, V. Bayat, B. Xiong, K. Zhang, H. Sandoval, G. David, H. Wang, R.S. Haltiwanger, and H.J. Bellen. 2012. A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science (New York, N.Y.). 338:1229-1232.
Yang, W.K., Y.H. Peng, H. Li, H.C. Lin, Y.C. Lin, T.T. Lai, H. Suo, C.H. Wang, W.H. Lin, C.Y. Ou, X. Zhou, H. Pi, H.C. Chang, and C.T. Chien. 2011. Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth. Neuron. 72:285-299.
Yano, H., M. Yamamoto-Hino, M. Abe, R. Kuwahara, S. Haraguchi, I. Kusaka, W. Awano, A. Kinoshita-Toyoda, H. Toyoda, and S. Goto. 2005. Distinct functional units of the Golgi complex in Drosophila cells. Proceedings of the National Academy of Sciences of the United States of America. 102:13467-13472.
Ye, B., Y. Zhang, W. Song, S.H. Younger, L.Y. Jan, and Y.N. Jan. 2007. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell. 130:717-729.
Yogev, S., E.D. Schejter, and B.Z. Shilo. 2010. Polarized secretion of Drosophila EGFR ligand from photoreceptor neurons is controlled by ER localization of the ligand-processing machinery. PLoS biology. 8.
Zeng, X., C. Chauhan, and S.X. Hou. 2010. Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in drosophila. Genesis. 48:607-611.
Zhang, J., J. Yin, and C. Wesley. 2013. From Drosophila development to adult: clues to Notch function in long-term memory. Frontiers in Cellular Neuroscience. 7.
Zhou, W., J. Chang, X. Wang, M.G. Savelieff, Y. Zhao, S. Ke, and B. Ye. 2014. GM130 is required for compartmental organization of dendritic golgi outposts. Current biology : CB. 24:1227-1233.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top