|
Reference
[1] Lun J. Development of a vacuum arc thruster for nanosatellite propulsion: Stellenbosch: University of Stellenbosch, 2009. [2] Sabol C, Burns R, McLaughlin CA. Satellite formation flying design and evolution. Journal of spacecraft and rockets. 2001;38(2):270-8. [3] Esper J, Neeck S, Slavin JA, Wiscombe W, Bauer FH. Nano/micro satellite constellations for earth and space science. Acta Astronautica. 2003;52(9-12):785-92. [4] Bauer F, Bristow J, Folta D, Hartman K, Quinn D, How J, et al. Satellite formation flying using an innovative autonomous control system (AutoCon) environment. Conference Satellite formation flying using an innovative autonomous control system (AutoCon) environment. p. 3821. [5] Folta D, Newman L, Gardner T. Foundations of formation flying for mission to planet earth and new millennium. Conference Foundations of formation flying for mission to planet earth and new millennium. p. 3645. [6] Kolbeck J, Lukas J, Teel G, Keider M, Hanlon E, Pittman J, et al. μCAT Micro-Propulsion Solution for Autonomous Mobile On-Orbit Diagnostic System. 2016. [7] Kronhaus I, Schilling K, Jayakumar S, Kramer A, Pietzka M, Schein J. Design of the uwe-4 picosatellite orbit control system using vacuum-arc-thrusters. Conference Design of the uwe-4 picosatellite orbit control system using vacuum-arc-thrusters. p. 6-10. [8] Robinson JB, Richie DJ. Stabilization and Attitude Determination Methods for FalconSAT-3. Journal of Spacecraft and Rockets. 2016:507-19. [9] Jahn RG. Physics of electric propulsion: Courier Corporation, 2006. [10] Sutton GP, Biblarz O. Rocket propulsion elements: John Wiley & Sons, 2016. [11] 李後毅. 先導型電弧火箭系統之自主研發. 成功大學航空太空工程學系學位論文. 2010:1-103. [12] Shen M-H, Fang H-K, Chao Y-C, Tam SW, Li Y-H. Development of a Micro ECR Ion Thruster for Space Propulsion. 2017. [13] Choueiri EY. A critical history of electric propulsion: The first 50 years (1906-1956). Journal of Propulsion and Power. 2004;20(2):193-203. [14] Cybulski RJ, Shellhammer DM, Lovell RR, Domino EJ, Kotnik JT, Cybulski J, et al. Results from SERT I ion rocket flight test. 1965. [15] Goldman R, Kerslake W, Nieberding W. SERT II-Mission, thruster performance, and in-flight thrust measurements. Journal of Spacecraft and Rockets. 1971;8(3):213-24. [16] Jordan IJ. Electric propulsion: which one for my spacecraft. Space Systems I course at JHU, Whiting School of Engineering. 2000. [17] Qi N, Schein J, Binder R, Krishnan M, Anders A, Polk J. Compact vacuum arc micro-thruster for small satellite systems. Conference Compact vacuum arc micro-thruster for small satellite systems. p. 3793. [18] Tilley D, Spores R. Life extension strategies for Space Shuttle-deployed small satellites using a pulsed plasma thruster. Conference Life extension strategies for Space Shuttle-deployed small satellites using a pulsed plasma thruster. p. 2730. [19] Schein J, Qi N, Binder R, Krishnan M, Ziemer J, Polk J, et al. Inductive energy storage driven vacuum arc thruster. Review of Scientific Instruments. 2002;73(2):925-7. [20] Anders A, Brown IG, MacGill RA, Dickinson MR. Triggerless' triggering of vacuum arcs. Journal of Physics D: Applied Physics. 1998;31(5):584. [21] Boxman RL, Sanders DM, Martin PJ. Handbook of vacuum arc science & technology: fundamentals and applications: William Andrew, 1996. [22] Lafferty JM. Vacuum arcs: Theory and applications: John Wiley & Sons, 1980. [23] Miller HC. Electrical discharges in vacuum: 1980-90. IEEE transactions on Electrical Insulation. 1991;26(5):949-1043. [24] Daalder J. Components of cathode erosion in vacuum arcs. Journal of Physics D: Applied Physics. 1976;9(16):2379. [25] Jüttner B. Cathode spots of electric arcs. Journal of Physics D: Applied Physics. 2001;34(17):R103. [26] Takikawa H, Tanoue H. Review of cathodic arc deposition for preparing droplet-free thin films. IEEE Transactions on Plasma Science. 2007;35(4):992-9. [27] Dethlefsen R. Performance measurements on a pulsed vacuum arc thruster. AIAA Journal. 1968;6(6):1197-9. [28] Gilmour A, Lockwood DL. Pulsed metallic-plasma generators. Proceedings of the IEEE. 1972;60(8):977-91. [29] Polk JE, Sekerak MJ, Ziemer JK, Schein J, Qi N, Anders A. A theoretical analysis of vacuum arc thruster and vacuum arc ion thruster performance. IEEE Transactions on Plasma Science. 2008;36(5):2167-79. [30] Qi N, Gensler S, Prasad RR, Krishnan M, Vizir A. A vacuum arc ion thruster for space propulsion. ALAMEDA APPLIED SCIENCES CORP SAN LEANDRO CA; 1998. [31] Tang B, Idzkowski L, Au M, Parks D, Krishnan M, Ziemer J. Thrust improvement of the magnetically enhanced vacuum arc thruster (MVAT). Conference Thrust improvement of the magnetically enhanced vacuum arc thruster (MVAT), vol. 304. p. 2005. [32] Keidar M, Schein J, Wilson K, Gerhan A, Au M, Tang B, et al. Magnetically enhanced vacuum arc thruster. Plasma Sources Science and Technology. 2005;14(4):661. [33] Zhuang T, Shashurin A, Brieda L, Keidar M. Development of micro-vacuum arc thruster with extended lifetime. Conference Development of micro-vacuum arc thruster with extended lifetime. [34] Lun J, Law C. Influence of cathode shape on vacuum arc thruster performance and operation. IEEE Transactions on Plasma Science. 2015;43(1):198-208. [35] Fuchikami S, Nakamoto M, Toyoda K, Cho M. Development of vacuum arc thruster for nano satellite. Conference Development of vacuum arc thruster for nano satellite. [36] Pietzka M, Kühn-Kauffeldt M, Schein J, Kronhaus I, Schilling K, Mai T, et al. Innovative vacuum arc thruster for cubesat constellations. Conference Innovative vacuum arc thruster for cubesat constellations. [37] Haque SE, Dinelli CK, Keidar M, Lim T. Quad channel Micro-Cathode Arc Thruster Electric Propulsion subsystem for the Ballistic Reinforced Satellite (BRICSat-P). Conference Quad channel Micro-Cathode Arc Thruster Electric Propulsion subsystem for the Ballistic Reinforced Satellite (BRICSat-P). p. 3909. [38] Keidar M, Haque S, Zhuang T, Shashurin A, Chiu D, Teel G, et al. Micro-cathode arc thruster for phonesat propulsion. 2013. [39] Statom T. Vacuum Arc Nano-Thruster Cathode Performance for Nano-Satellites. Conference Vacuum Arc Nano-Thruster Cathode Performance for Nano-Satellites. p. 4291. [40] Sekerak MJ. Plasma plume characterization of a vacuum arc thruster2005. [41] Schein J, Gerhan A, Woo R, Au M, Krishnan M. Vacuum arc plasma thrusters with inductive energy storage driver. Google Patents; 2007. [42] Brown IG. Vacuum arc ion sources. Review of scientific instruments. 1994;65(10):3061-81. [43] Aheieva K. Development of a Vacuum Arc Thruster for Nanosatellites: 九州工業大学, 2016. [44] Zhuang T, Shashurin A, Denz T, Keidar M, Vail P, Pancotti A. Performance characteristics of micro-cathode arc thruster. Journal of Propulsion and Power. 2013;30(1):29-34. [45] Schein J, Gerhan A, Rysanek F, Krishnan M. Vacuum arc thruster for cubesat propulsion. IEPC-0276, 28th IEPC. 2003;100. [46] Daalder J. Cathode spots and vacuum arcs. Physica B+ C. 1981;104(1-2):91-106. [47] Tuma D, Chen C, Davies D. Erosion products from the cathode spot region of a copper vacuum arc. Journal of Applied Physics. 1978;49(7):3821-31. [48] Brown IG, Shiraishi H. Cathode erosion rates in vacuum-arc discharges. IEEE transactions on plasma science. 1990;18(1):170-1. [49] Kimblin C. Erosion and ionization in the cathode spot regions of vacuum arcs. Journal of Applied Physics. 1973;44(7):3074-81. [50] Behrisch R. Surface erosion by electrical arcs. Physics of Plasma-Wall Interactions in Controlled Fusion: Springer; 1986. p. 495-513. [51] Kimblin C. Cathode spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs. Journal of Applied Physics. 1974;45(12):5235-44. [52] Daalder J. Erosion and the origin of charged and neutral species in vacuum arcs. Journal of Physics D: Applied Physics. 1975;8(14):1647. [53] Anders A. Ion charge state distributions of vacuum arc plasmas: The origin of species. Physical Review E. 1997;55(1):969. [54] Schein J, Qi N, Binder R, Krishnan M, Ziemer JK, Polk JE, et al. Low mass vacuum arc thruster system for station keeping missions. IEPC paper. 2001:01-228. [55] 井川秋夫, 西原隆治. 真空装置のメンテナンス リークテストの解説. 表面と真空. 2018;61(8):505-9. [56] Naz MY, Ghaffar CA, Rehman N, Naseer S, Zakaullah M. Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma. Progress In Electromagnetics Research. 2011;114:113-28. [57] Marks HS, Beilis II, Boxman RL. Measurement of the Vacuum Arc Plasma Force. IEEE Transactions on Plasma Science. 2009;37(7):1332-7. [58] Djakov B. A model for the cathode mechanism in low-current metal vapour arcs. Journal of Physics D: Applied Physics. 1983;16(3):343. [59] Aheieva K, Toyoda K, Cho M. Vacuum Arc Thruster Development and Testing for Micro and Nano Satellites. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN. 2016;14(ists30):Pb_91-Pb_7. [60] Kronhaus I, Laterza M, Maor Y. Inline screw feeding vacuum arc thruster. Review of Scientific Instruments. 2017;88(4):043505. [61] Lun J, Dobson R, Steyn W. Performance measurements of a medium-current short-pulsed vacuum arc thruster. Experimental Techniques. 2014;38(3):6-16.
|