跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/11 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋偉誠
研究生(外文):Song, Wei-Cheng
論文名稱:迴轉式冷媒壓縮機之流場模擬分析
論文名稱(外文):Flow Field Simulation of a Rotary Refrigerant Compressor
指導教授:沈銘秋沈銘秋引用關係
指導教授(外文):Shen, Ming-Chiou
口試委員:林建南呂金生
口試委員(外文):Lin, Chien-NanLeu, Jin-Sheng
口試日期:2019-07-23
學位類別:碩士
校院名稱:遠東科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:135
中文關鍵詞:滾動轉子活塞迴轉式壓縮機泵體R410a數值模擬性能
外文關鍵詞:rolling pistonrotary compressorpump bodyR410anumerical simulationperformance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本文主要使用CFD商用套裝軟體PUMPLINX,針對使用R410a冷媒之具滾動轉子活塞的迴轉式壓縮機泵體,進行之三維暫態紊流流場之數值模擬分析,並依據模擬結果進行壓縮機之性能計算。然後,並將數值模擬結果與實測值做比較,以驗證本文所使用的數值系統之準確性與可靠度。接著,針對泵體之幾何外形參數進行規劃,然後對一系列規劃完成具不同缸體外形、不同吸入口外形與吸入口安裝方式之壓縮機泵體,進行一系列熱流場模擬分析與性能比較,以探討各項幾何參數變化,對壓縮機流場與性能之影響趨勢,進而找出較佳之壓縮機泵體的幾何外形設計參數。
首先,由原始外形的模擬結果發現:數值模擬與實驗測試結果之間的差異在±3%以內,證實本文所採用數值模擬系統具有一定的準確度與可行性。再者,由流場觀察發現:因活塞與葉片間隙之洩漏,導致汽缸中會產生逆流、渦流與超音速流之現象。另外,再由比較不同泵體幾何外形參數之模擬結果發現:吸入口孔徑以5mm較佳,可同時提升冷媒循環量0.9%、出力5.4%,總效率1.5%;而吸入口形狀則以噴嘴外形較佳;至於吸入口安裝方式則對性能影響不大。此外,汽缸高度降低,對冷媒流量與入力影響不大;但汽缸高度增加,則會使出力與效率大幅降低。再者,變化缸體之月牙欠缺外形(包含:角度與距離),皆會使冷媒循環量明顯降低。

In this study, the numerical simulation of three-dimensional transient turbulent flow field for the pump body of rotary compressor with rolling piston and R410a refrigerant was carried out by using the CFD commercial software PUMPLINX. Also, the various performances of compressor were calculated based on the simulation results and compared with the measured values to verify the accuracy and reliability of the numerical system used in this paper. Then, the geometric shape parameters of the pump body are planned, and then a series of the flow field simulation, analysis and performance comparison were performed for several pump bodies with different cylinder shapes, different shapes of suction port and different the installation form of suction port. Furthermore, the influence of various geometric parameters of the pump on the flow field and performance of the compressor was discussed, and the better design parameters of the pump geometry were found by comparing the above simulation results.
Firstly, the simulation results of the original compressor shape show that the difference between the numerical simulation and the experimental test results is within ±3%, which proves that the numerical simulation system used in this paper has certain accuracy and feasibility. Furthermore, it is found through the flow field observation that backflow, vortex and supersonic flow occur in the cylinder due to the leakage of the gap between the piston and the cylinder or between the piston and the blade. In addition, by comparing the simulation results of several pump bodies with different geometry parameters, it is found that the better diameter size of suction port is 5mm, which can simultaneously increase the refrigerant flow rate by 0.9%, the output power by 5.4%, and the total efficiency of compressor by 1.5%. The better suction port shape is the nozzle shape; however, the suction port installation mode is little impact on performance. In addition, the cylinder height is reduced, which has little effect on the refrigerant flow rate and the input power; however, if the cylinder height is increased, the output power and efficiency are greatly reduced. Finally, changing the shape of the vent will significantly reduce the refrigerant flow rate.

致謝 I
摘要 II
Abstract III
目錄 V
表目錄 IX
圖目錄 XI
符號說明 XXI
第一章 緒 論 1
1.1前言 1
1.2文獻回顧 5
1.3研究動機與目的 8
第二章 研究流程與參數規劃 11
2.1研究流程 11
2.2壓縮機泵體原始外形與尺寸 13
2.3吸入口參數規劃 15
2.3.1吸入口直徑 15
2.3.2吸入口形狀 17
2.3.3吸入口安裝方式 19
2.4缸體外形參數規劃 21
2.4.1缸體高度 21
2.4.2月牙欠缺外形 22
2.5壓縮機整體外形參數規劃 24
第三章 數值模擬方法 27
3.1統御方程式 27
3.2數值方法 29
3.2.1有限體積法與方程式離散化 29
3.2.2 SIMPLE法則 32
3.3模形建立與網格產生 35
3.3.1模形建立 35
3.3.2網格產生 35
3.3.3網格交界面 44
3.4邊界與初始條件設定 45
3.4.1邊界條件設定 45
3.4.2初始條件設定 47
3.5時間步階與流體性質設定 47
3.5.1計算步階與時間設定 47
3.5.2流體性質設定 48
第四章 模擬結果 49
4.1 性能計算與監測點/觀測面設定 49
4.1.1性能計算 49
4.1.2監測點與觀測面設定 50
4.2網格獨立性測試與暫態模擬圈數探討 51
4.3壓縮機原始外形模擬結果與實測驗證 54
4.3.1壓縮機原始外形模擬結果 54
4.3.2實測驗證 62
4.4變化吸入口模擬結果 63
4.4.1吸入口直徑 63
4.4.2吸入口外形 72
4.4.3吸入口安裝方式 93
4.5變化缸體外形模擬結果 107
4.5.1缸體高度 107
4.5.2缸體月牙角度 115
4.5.3缸體月牙距離 122
第五章 結論與建議 129
5.1結論 129
5.2建議 130
參考文獻 133


參考文獻
[1]維基百科,威利斯·開利,2019年4月29日取自: https://zh.wikipedia.org/wiki/%E5%A8%81%E5%88%A9%E6%96%AF%C2%B7%E5%BC%80%E5%88%A9。
[2]國家教育研究局,氟氯碳化合物,2019年4月29日取自: http://terms.naer.edu.tw/detail/1317980/。
[3]蕭明哲、沈志秋,“冷凍空調概論” 初版,台灣,全華圖書,2017。
[4]Kamal Sharma, V. Koteswara Rao, M N S V Kiran, Anil Gopinathan, "CFD Analysis of Discharge Gas flow in Rotary Compressor for OCR reduction", International Compressor Engineering Conference,1224, Purdue, July 12-15, 2010.
[5]Jianhua Wu and Gang Wang, “Numerical study on oil supply system of a rotary compressor,” Applied Thermal Engineering, Vol. 61, pp. 425-432, 2013.
[6]羅澤良,“旋轉式壓縮機性能的影響因素及改善分析”,日用電器, Vol. 11, pp.55-57, 2014。
[7]Hui Ding and Haiyang Gao,“3-D Transient CFD Model For A Rolling Piston Compressor With A Dynamic Reed Valve”International Compressor Engineering Conference, pp.1-11, 2014.
[8]Yasutaka Ito, Hitoshi Hattori and Kazuhiko Miura,“Mixed Lubrication Analysis of Vane Sliding Surface in Rotary Compressor Mechanisms”,International Compressor Engineering Conference at Purdue, 2014.
[9]Dehua Caia, Guogeng Hea, Tetsuhide Yokoyamab, Qiqi Tiana, Xiaohan Yanga and Jiao Pana, “Simulation and comparison of leakage characteristics of R290 in rolling piston type rotary compressor” ,International Journal of Refrigeration, Vol. 53, pp.42-54, 2015.
[10]方鎮豪,“迴轉式壓縮機熱流模擬分析”,國立中央大學機械工程研究所碩士論文,2016。
[11]Ki-Youl Noh, Byung-Chae Min, Sang-Jin Song, Jang-Sik Yang, Gyung-Min Choi, Duck-Jool Kima, “Compressor efficiency with cylinder slenderness ratio of rotary compressor at various compression ratiosRendement d'un compresseur avec rapport d'élancement cylindrique d'un compresseur rotatif à divers taux de compression” ,International Journal of Refrigeration, Vol. 70, pp.42-56, 2016.
[12]Lingchao Kong, Qingfu Zhao, Liping Ren and Jia Xu,“The Influence of Main Bearing Parameters on The Bearing Wear in Rotary Compressor” , International Compressor Engineering Conference at Purdue, 2016.
[13]翁國維,“滾動活塞式壓縮機三維流場模擬與性能分析” ,流體機械,Vol. 38, pp.1-4,2016。
[14]De-Chun Ba, Wen-Juan Deng, Shu-Gang Che, Yang Li, Hong-Xing Guo, Na Li, "Gas dynamics analysis of a rotary compressor based on CFD", Applied Thermal Engineering, Vol.99, pp.1263-1269, 2016.
[15]胡地、李紅旗,“滾動轉子式壓縮機的技術現狀及發展趨勢” ,制冷與空調,中國, Vol. 17,pp.73-79,2017。
[16]熊枝林、李尚平,“旋轉壓縮機泵體效率分析及提效的方法” ,華東科技(綜合), Vol. 2,pp. 295-295,2018。
[17]胡余生、徐瑞、黃艷芬、楊國蟒,“基于CFD方法的滾動轉子式壓縮機性能分析方法” ,流體機械, Vol. 1, pp.38-42, 2017。
[18]Pumplinx 4.2.11版,Simerices公司,美國,2017年。.
[19]S. V. Patankar and D. B. Spalding, “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[20]ZengliWang, XiaolingYu, FeilongLiu, Quanke Feng and Qin Tan, “Dynamic analyses for the rotor-journal bearing system of a variable speed rotary compressorAnalyses dynamiques pour le système de palier de rotor d'un compresseur rotatif à vitesse variable” , Int. International Journal of Refrigeration Vol36 , No. 7, pp 1938-1950, 2013.
[21]Yasutaka Ito, Hitoshi Hattori and Kazuhiko Miura, “Mixed Lubrication Analysis of Vane Sliding Surface in Rotary Compressor Mechanisms”,International Compressor Engineering Conference at Purdue.
[22]H. Ding, F. C. Visser, Y. Jiang, M. Furmanczyk, “Demonstration And Validation Of A 3D CFD Simulation Tool Predicting Pump Performance And Cavitation For Industrial Applications”Journal of Fluids Engineering, Vol.133, pp.1-14, 2011.
[23]劉方、翁廣成、龍天渝,“CFD基礎及應用” 初版,重慶大學出版社重慶,2015。
[24]吳子牛, “計算流體力學基本原理”,初版,北京,科學出版社,2001。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top