|
[1]iThome(2017年2月14日)。臺灣史上第一次券商集體遭DDoS攻擊勒索事件。iThome。取自https://www.ithome.com.tw/news/111875。 [2]Trend Labs 趨勢科技全球技術支援與研發中心(2018年3月4日)。Cloudflare和Github成為新DDoS 放大攻擊受害者攻擊規模為Mirai攻擊兩倍。資安趨勢部落格。取自https://blog.trendmicro.com.tw/?p=54744)。 [3]陳曉莉(2016年11月30日)。40萬裝置的Mirai殭屍大軍竟然上網公開出租。iThome。取自https://www.ithome.com.tw/news/109941。 [4]Trend Labs 趨勢科技全球技術支援與研發中心(2017年5月3日)。比Mirai更狠,BrickerBot要讓智慧型家電,監控攝影機…等IoT裝置,永遠變磚塊。資安趨勢部落。取自https://blog.trendmicro.com.tw/?p=49354。 [5]黃彥鈞(2018年12月6日)。星盾發表2018資安報告,自動化攻擊成重大威脅。TechNews科技新報。取自http://technews.tw/2018/12/06/forceshield-information-security-report-2018/。 [6]MoneyDJ (2017年7月13日)。深度學習助網路攻擊偵測率升至99%,NVIDIA出資力挺。Tech News科技新報。取自https://technews.tw/2017/07/13/nvidia-investment-deep-instinct/。 [7]Hochreiter, S. (1997). Long Short-Term Memory. Neural Computation, 9:8, 1735-1780. [8]Hofer, M. (2018). Deep Learning for Named Entity Recognition #2: Implementing the state-of-the-art Bidirectional LSTM + CNN model for CoNLL 2003. Retrieve from website: https://towardsdatascience.com/deep-learning-for-named-entity-recognition-2-implementing-the-state-of-the-art-bidirectional-lstm-4603491087f1. [9]Kim, Y. &Feamster, N. (2013). Improving Network Management with Software Defined Networking. IEEE Communications Magazine, 51:2, 114-119. [10]Koroniotis, N., Moustafa, N., Sitnikova, E. & Slay, J. (2017). Towards Developing Network Forensic Mechanism for Botnet Activities in the IoT based on Machine Learning Techniques. Retrieve from arXiv website: https://arxiv.org/abs/1711.02825. [11]Lee, C. (2017). Understanding Bidirectional RNN in PyTorch.Retrieve from website: https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66. [12]Lin, J. (2014). Ryu and Snort Integration.Retrieve from website: http://linton.logdown.com/posts/2014/09/03/ryu-and-snort-integration. [13]McDermott, C. D., Majdani, F. &Petrovski, A. (2018). Botnet Detection in the Internet of Things Using Deep Learning Approaches.Paper presented at 2018 International Joint Conference on Neural Networks (IJCNN). [14]Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D. &Elovici, Y. (2018). N-BaIoT Network-based Detection of IoT Botnet Attacks Using Deep Autoencoder.IEEE Pervasive Computing,17:3,12-22. [15]Min, E., Long, J., Liu, Q., Cui, J. & Chen, W. (2018). TR-IDS: Anomaly-Based Intrusion Detection through Text-Convolutional Neural Network and Random Forest. Security and Communication Networks, 1-9. [16]Open Networking Foundation (2012a). Software-Defined Networking: The New Norm for Networks. Retrieve from ONF website: https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf. [17]Open Networking Foundation (2012b). OpenFlow® Switch Specification 1.3.0. Retrieve from ONF website: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf. [18]Open vSwitch. Retrieve from website: https://www.openvswitch.org/. [19]Pradhan, A. (2017). Recurrent Neural Networks Introduction to Recurrent Neural Network. Retrieve from Medium website: https://medium.com/lingvo-masino/introduction-to-recurrent-neural-network-d77a3fe2c56c. [20]Qin, B., Zhang, H., Tu, T. &Guan, H. (2018). An SDN-based Adaptive Sampling Framework for Botnet Detection in IoT Networks. International Journal of Computer Engineering and Applications, 12, 1-8. [21]Schuster, M. & Paliwal, K. K. (1997). Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal Processing, 45:11, 2673-2681. [22]Tariq, F. &Baig, S. (2017). Machine Learning Based Botnet Detection in Software Defined Networks. International Journal of Security and its Applications, 11:11, 1-12. [23]Torres, P., Catania, C., Garcia, S. & Garino, C. G. (2016). An Analysis of Recurrent Neural Networks for Botnet Behavior Detection. Paper presented at 2016 IEEE Biennial Congress of Argentina (ARGENCON). [24]Tran, D., Mac, H., Van, T., Tran, H. A. & Linh Giang, N. (2018). A LSTM based Framework for Handling Multiclass Imbalance in DGA Botnet Detection.Neurocomputing, 275, 2401-2413. [25]Wijesinghe, U., Tupakula, U. &Varadharajan, V. (2015). Botnet Detection Using Software Defined Networking. Paper presented at the 2015 22nd International Conference on Telecommunications (ICT).
|