跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李政憲
研究生(外文):Cheng-hsien Li
論文名稱:氧化鋅薄膜於表面聲波元件之應用
論文名稱(外文):The Preparation of Single-Crystal ZnO Film and Its Application on Layered SAW Device
指導教授:劉代山
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:68
中文關鍵詞:non
外文關鍵詞:non
相關次數:
  • 被引用被引用:1
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻鍍系統,在室溫下沉積高品質之氧化鋅薄膜,在室溫下沉積所獲得最佳氧化鋅薄膜的濺鍍條件為,射頻功率175 W,濺鍍壓力10 mTorr時,此時氧化鋅薄膜具有最佳的單晶結構與薄膜內應力 (Stress = -1.2×1010 dyn/cm2,此屬於壓應力),接著加入氧分壓比例為30 %參與濺鍍過程,可沉積出單晶及表面粗糙度 (Ra = 2.47 nm) 較佳的氧化鋅薄膜,然而由於氧原子參與濺鍍過程,使得薄膜內應力變大,此以快速熱退火處理來降低加入氧分壓參與濺鍍過程後所造成的薄膜內應力,結果顯示當在氧氣環境下,500 ℃熱處理後,薄膜結晶性及內應力獲得明顯改善 (Stress = 0.33×1010 dyn/cm2,此屬於張應力),因此,利用這種方式所獲得之氧化鋅薄膜具備單晶結構、低薄膜內應力以及平整的表面粗糙度,適合用來製作層狀表面聲波元件的氧化鋅薄膜。
而在表面聲波元件製作上,因以純氬氣沉積之氧化鋅薄膜所造成的表面粗糙度過大,使得表面聲波訊號散射情況嚴重,因此在元件上並未量測到表面聲波訊號,但由於氧分壓 (30 %) 參與濺鍍過程使得氧化鋅薄膜之表面粗糙度獲得良好的改善,所以在中心頻率240 MHz處量測得明顯的聲波訊號,其表面波速為4800 m/s,Insertion Loss為 -18 dB。
Abstract
High quality piezoelectric ZnO thin film on room temperature by RF magnetron sputtering technique. The ZnO films on room temperature were deposited at r.f. power of 175 W, working pressure of 10 mTorr which have been excellent single-crystal structure and stress of films (Stress=-1.2×1010 dyn/cm2, this belong to compressive stress). Then O2-Ar mixture gas of 30 % was introduced as discharge and reaction gas to deposit ZnO films. The ZnO films have been excellent single-crystal structure and surface rough- ness (Ra= 2.47 nm). However, a incremental stress with tensile component parallel to c-axis was appeared due to the excess oxygen atoms filled in the interstitial site. The post-annealing treatment under oxygen environment had been found to improve stress of films due to oxygen atmosphere resulted. The experiment result shows associate post-annealing treatment at 500℃ under oxygen atmosphere environment which film crystallinity and stress have been apparent improvement. Therefore, this ZnO film is promising to fabricate a layered SAW device with single -crystal structure, lower stress and smooth surface roughness.
At the same time layered SAW device fabricated, the surface rough- ness of ZnO thin film deposited on pure argon ambient was larger and situ- ation of surface roughness lead to surface acoustic single dispersion. Therefore, the surface acoustic single had not measured yet. Due to surface roughness of ZnO thin film obtain appropriate improvement by deposited on oxygen partial pressure of 30 %, hence center frequency of 240 MHz corresponding to an acoustic velocity of 4800 m/s and insertion loss of -18 dB were measured.
中文摘要....................................................................................................Ⅰ
英文摘要....................................................................................................Ⅱ
目錄............................................................................................................Ⅲ
圖目............................................................................................................Ⅳ
第一章 前言.................................................................................................1
第二章 理論基礎.........................................................................................5
2-1 電漿與濺鍍原理.......................................................................5
2-2 材料應力概論...........................................................................6
2-3 壓電效應...................................................................................9
2-4 氧化鋅與藍寶石材料性質.....................................................10
2-5 表面聲波元件簡介.................................................................11
第三章 實驗方法與步驟...........................................................................14
3-1 實驗系統與流程.....................................................................14
3-2 氧化鋅濺鍍參數與熱處理條件.............................................16
3-3 表面聲波元件製作.................................................................18
3-4 表面聲波元件量測.................................................................20
第四章 結果與討論...................................................................................22
第五章 結論...............................................................................................34參考文獻....................................................................................................36
[1] Hyoun Woo Kim, Nam Ho Kim, “Structural studies of room- temperature RF magnetron sputtered ZnO films under different RF powered conditions”, Materials Science and Engineering, B103 (2003) p.297-302
[2] Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting, “Growth of single crystal ZnO nanowires using sputter deposition”, Diamond and Related Materials, vol.12 (2003) p.1841-1844
[3] Tsung-Tsong Wu, Wei-Shan Wang, “An experimental study on the ZnO/Sapphire layered surface acoustic wave device”, Journal of Applied Physics, vol.96, No.9 (2004) p.5249-5253
[4] Sheng-Yuan Chu, Walter Water, Jih-Tsang Liaw, “Influence of post- deposition annealing on the properties of ZnO films prepared by RF magnetron sputtering”, Journal of European Ceramic Society, vol.23 (2003) p.1593-1598
[5] N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters”, Materials Science in Semiconductor Processing, vol.2 (1999) p.247-252
[6] Yang Zhang, Bixia Lin, Xiankai Sun, and Zhuxi Fu, “Temperature- dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by sol-gel process”, Applied Physics Letters, vol.86 (2005) p.131910-1
[7] R. Ghosh, and D. Basak, “Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films”, Journal of Applied Physics, vol.96 (2004) p.2689-2692
[8] T.-C. Lee, J.-T. Lee, and M. A. Robert, “Surface acoustic wave applications of lithium niobate thin films”, Applied Physics Letters, vol.82 (2003) p.191-193
[9] Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization”, Journal of Applied physics, vol.84 (1998) p.3912-3918
[10] Nuri W. Emanetoglu, George Patounakis, Shaohua Liang, R. Gorla, Richard Wittstruck, and Yicheng Lu, “Analysis of SAW Properties of Epitaxial ZnO Films Grown on R-Al2O3 Substrates”, IEEE Transactions on Ultrasonics, vol.48 No.5 (2001) p.1389-1394
[11] Michio Kadota, and Hajime Kando, “IF SAW Filters Without Love Wave’s Spurious Consisting of ZnO Film and Specific Cut Angle Quartz Substrate”, IEEE (2003) p.888-892
[12] Walter Water and Sheng-Yuan Chu, “Physical and structural properties of ZnO sputtered films”, Materials Letters, vol.55 (2002) p.67-72
[13] J.J. Chen, Y. Gao, F. Zeng, D.M. Li, F. Pan, “Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films”, Applied Surface Science, vol.223 (2004) p.318-329
[14] Won Taeg Lim and Chang Hyo Lee, “Highly oriented ZnO thin films deposited on Ru/Si substrates”, Thin Solid Films, vol.353 (1999) p.12-15
[15] Hyoun Woo Kim and Nam Ho Kim, “Annealing effect for structure morphology of ZnO film on SiO2 substrates”, Materials Science in Semiconductor Processing, vol.7 (2004) p.1-6
[16] Y. Yoshino, T. Makino, Y. Katayama, T. Hata, “Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering”, Vacuum, vol.59 (2000) p.538-545
[17] Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films”, Applied Surface Science, vol.241 (2005) p.303-308
[18] T. B. Bateman, “Elastic Moduli of Single-Crystal Zinc Oxide”, Journal of Applied Physics, vol.33 (1962) p.3309-3312
[19] Michio Kadota and Makoto Minakata, “Properties of High quality ZnO Films Deposited by an RF Magnetron Mode Electron Cyclotron Resonance (ECR) Sputtering System”, IEEE Ultrasonics Symposium (1996) p.303-308
[20] Vinay Gupta and Abhai Mansingh, “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film”, Journal of Applied Physics, vol.80 (1996) p.1063-1073
[21] T. Mitsuyu, S. Ono, and K. Wasa, “Structures and SAW properties of rf-sputtered single-crystal films of ZnO on sapphire”, Journal of Applied Physics, vol.51 (1980) p.2464-2470
[22] V. Mortet, O. Elmazria, M. Nesladek, M. B. Assouar, “Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures”, Applied Physics Letters, vol.81 (2002) p.1720-1722
[23] Z. Hadjoub, I. Beldi, M. Bouloudnine, A. Gacem, and A. Doghmane, “Thin film loading effects on SAW velocity dispersion curves”, Electronics Letters, vol. 34 No. 3 (1998) p.313-315

[24] V. Mortet, A. Vasin, P.-Y. Jouan, O. Elmazria, M.-A. Djouadi, “Aluminium nitride films deposition by reactive triode sputtering for surface acoustic wave device applications”, Surface and Coatings Technology, vol.176 (2003) p.88-92
[25] Chang-Woo Nam and Kyu-Chul Lee, “Structural Properties and Frequency Response of AlN Thin Film Surface Acoustic Wave Device”, IEEE Electronics and Electrotechnology (2001) p.206-209
[26] Fumio Takeda, Tadashi Shiosaki and Akira Kawabata, “High coupling and high velocity surface acoustic waves using a c-axis oriented ZnO film on translucent Al2O3 ceramics”, Applied Physics Letters, vol.43 (1983) p.51-53
[27] Nuri W. Emanetoglu, Shaohua Liang, Chandrasekhar Gorla, and Yicheng Lu, “Epitaxial Growth and Characterization of High Quality ZnO Films for Surface Acoustic Wave Applications”, IEEE Ultrasonics Symposium (1997) p.195-199
[28] Hideharu Ieki and Michio Kadota, “ZnO Thin Films for High Frequency SAW Devices”, IEEE Ultrasonics Symposium (1999) p.281-289
[29] Soo-Hyung Seo, Wan-Chul Shin, and Jin-Seok Park, “A novel method of fabricating ZnO/diamond/Si multilayers for surface acoustic wave (SAW) device applications”, Thin Solid Films, vol.416 (2002) p.190-196
[30] Yoshihiko Shibata, Kiyoshi Kaya, and Kageyasu Akashi, “Epitaxial growth and surface acoustic wave properties of lithium niobate films grown by pulsed laser deposition”, Journal of Applied Physics, vol.77 (1995) p.1498-1503
[31] A.B.M.A. Ashrafi, B.-P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa, “Biaxial strain effect in exciton resonance energies of epitaxial ZnO layers grown on 6H-SiC substrates”, Journal of Crystal Growth, vol.275 (2005) p.2439-2443
[32] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, Journal of Applied Physics, vol.79 (1996) p.7983-7990
[33] 洪昭南,電漿反應器,化工技術第三卷第三期,(1995) p.124-136
[34] Hong Xiao 著, 羅正忠 張鼎張 譯, ”半導體製程技術導論 二版”,歐亞書局, 2001, p.396~399
[35] Ruijin Hong, Hongji Qi, Jianding Huang, Hongbo He, Zhengxiu Fan, and Jianda Shao, “Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films”, Thin Solid Films, vol.473 (2005) p.58-62
[36] Jin-Bock Lee, Hye-Jung Lee, and Jin-Seok PARK, “Effects of Two-Step Deposition and Thermal Treatment on the Frequency Response Characteristics of ZnO SAW Devices”, IEEE (2003) p.868-873
[37] K.B. Sundaram and A. Khan, “Characterization and optimization of zinc oxide films by r.f. magnetron sputtering”, Thin Solid Films, vol.295 (1997) p.87-91
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top