|
[1] M. Ames and M. Naaman. Why we tag: motivations for annotation in mobile and online media. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 971–980, 2007. [2] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR, 2016. [3] R. Arandjelović and A. Zisserman. Three things everyone should know to improve object retrieval. In IEEE Conference on Computer Vision and Pattern Recognition, 2012. [4] R. Arandjelović and A. Zisserman. All about VLAD. In IEEE Conference on Computer Vision and Pattern Recognition, 2013. [5] H. Azizpour, A. Sharif Razavian, J. Sullivan, A. Maki, and S. Carlsson. From generic to specific deep representations for visual recognition. In CVPR Workshops, 2015. [6] A. Babenko and V. Lempitsky. Aggregating local deep features for image retrieval. In ICCV, 2015. [7] A. Babenko, A. Slesarev, A. Chigorin, and V. S. Lempitsky. Neural codes for image retrieval. In European Conference on Computer Vision, pages 584–599, 2014. [8] R. G. Baraniuk. Compressive sensing. Lecture Notes in IEEE Signal Processing Magazine, 24(4):118–120, Jul. 2007. [9] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008. [10] A. Borji and L. Itti. State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):185–207, Jan. 2013. [11] V. Chandrasekhar, D. Chen, S. Tsai, N.-M. Cheung, H. Chen, G. Takacs, Y. Reznik, R. Vedantham, R. Grzeszczuk, J. Bach, and B. Girod. Stanford mobile visual search dataset. Stanford Digital Repository, 2013. Available at: http://purl.stanford.edu/rb470rw0983. [12] V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, Y. Reznik, R. Grzeszczuk, and B. Girod. Compressed histogram of gradients: A low-bitrate descriptor. Int. J. Comput. Vision, 96(3):384–399, Feb. 2012. [13] V. R. Chandrasekhar, D. M. Chen, S. S. Tsai, N.-M. Cheung, H. Chen, G. Takacs, Y. Reznik, R. Vedantham, R. Grzeszczuk, J. Bach, and B. Girod. The Stanford mobile visual search data set. In Proceedings of the second annual ACM conference on Multimedia systems, pages 117–122, 2011. [14] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the thirty-fourth annual ACM symposium on Theory of computing, STOC ’02, pages 380–388, 2002. [15] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, H. Chen, R. Vedantham, R. Grzeszczuk, and B. Girod. Residual enhanced visual vectors for on-device image matching. In IEEE Asilomar Conference on Signals, Systems, and Computer, 2011. [16] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, R. Vedantham, R. Grzeszczuk, and B. Girod. Residual enhanced visual vector as a compact signature for mobile visual search. Signal Process., 93(8):2316–2327, Aug. 2013. [17] D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham, T. Pylvänäinen, K. Roimela, X. Chen, J. Bach, M. Pollefeys, B. Girod, and R. Grzeszczuk. City-scale landmark identification on mobile devices. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 737–744, 2011. [18] D. M. Chen and B. Girod. Memory-efficient image databases for mobile visual search. IEEE MultiMedia, 21(1):14–23, 2014. [19] D. M. Chen and B. Girod. A hybrid mobile visual search system with compact global signatures. IEEE Transactions on Multimedia, 17(7):1019–1030, 2015. [20] D. M. Chen, S. S. Tsai, V. Chandrasekhar, G. Takacs, J. P. Singh, and B. Girod. Tree histogram coding for mobile image matching. In Data Compression Conference, pages 143–152, 2009. [21] Z.-Q. Cheng, Y. Liu, X. Wu, and X.-S. Hua. Video ecommerce: Towards online video advertising. In ACM Multimedia, pages 1365–1374, 2016. [22] O. Chum, A. Mikulík, M. Perdoch, and J. Matas. Total recall ii: Query expansion revisited. In CVPR, pages 889–896, 2011. [23] O. Chum, M. Perdoch, and J. Matas. Geometric min-hashing: Finding a (thick) needle in a haystack. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 17–24, 2009. [24] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In IEEE International Conference on Computer Vision, 2007. [25] J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015. [26] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In CVPR, 2016. [27] L. Dai, H. Yue, X. Sun, and F. Wu. Imshare: instantly sharing your mobile landmark images by search-based reconstruction. In Proceedings of the 20th ACM international conference on Multimedia, pages 579–588, 2012. [28] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In Symposium on Operating Systems Design and Implementation, pages 137–150, 2004. [29] J. Delhumeau, P.-H. Gosselin, H. Jégou, and P. Pérez. Revisiting the VLAD image representation. In ACM Multimedia, 2013. [30] M. Douze, A. Ramisa, and C. Schmid. Combining attributes and Fisher vectors for efficient image retrieval. In IEEE Conf. on Computer Vision and Pattern Recognition, 2011. [31] T. Elsayed, J. Lin, and D. Oard. Pairwise document similarity in large collections with mapreduce. In the Association for Computational Linguistics, pages 265–268, 2008. [32] B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315:972–976, 2007. [33] S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. I know what you did last summer: Object-level auto-annotation of holiday snaps. In IEEE International Conference on Computer Vision, pages 614–621, 2009. [34] B. Girod, V. Chandrasekhar, D. M. Chen, N. Cheung, R. Grzeszczuk, Y. A. Reznik, G. Takacs, S. S. Tsai, and R. Vedantham. Mobile visual search. IEEE Signal Process. Mag., 28(4):61–76, 2011. [35] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik. Learning binary codes for high-dimensional data using bilinear projections. In IEEE Conference on Computer Vision and Pattern Recognition, pages 484–491, 2013. [36] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 99, 2012. [37] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, pages 392–407, 2014. [38] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image retrieval: Learning global representations for image search. In ECCV, pages 241–257, 2016. [39] J. Guo, H. Prasetyo, and J. Chen. Content-based image retrieval using error diffusion block truncation coding features. IEEE Trans. Circuits Syst. Video Techn., 25(3):466–481, 2015. [40] J. Hays and A. A. Efros. IM2GPS: estimating geographic information from a single image. In IEEE Conf. on Computer Vision and Pattern Recognition, 2008. [41] J. He, J. Feng, X. Liu, T. Cheng, T.-H. Lin, H. Chung, and S.-F. Chang. Mobile product search with bag of hash bits and boundary reranking. In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2012. [42] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504 – 507, 2006. [43] R. Hong, Y. Yang, M. Wang, and X. S. Hua. Learning visual semantic relationships for efficient visual retrieval. IEEE Transactions on Big Data, 1(4):152–161, Dec 2015. [44] J. Huang, R. S. Feris, Q. Chen, and S. Yan. Cross-domain image retrieval with a dual attribute-aware ranking network. In ICCV, 2015. [45] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks. In NIPS, pages 2017–2025, 2015. [46] H. Jégou and O. Chum. Negative evidences and co-occurrences in image retrieval: the benefit of pca and whitening. In Proceedings of the 12th European conference on Computer Vision - Volume Part II, ECCV’12, pages 774–787, 2012. [47] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, Jan. 2011. [48] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image representation. In CVPR, pages 3304–3311, 2010. [49] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating local image descriptors into compact codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9):1704–1716, Sept. 2012. [50] R. Ji, L.-Y. Duan, J. Chen, H. Yao, Y. Rui, S.-F. Chang, and W. Gao. Towards low bit rate mobile visual search with multiple-channel coding. In Proceedings of the 19th ACM international conference on Multimedia, pages 573–582, 2011. [51] Y.-G. Jiang, J. Wang, X. Xue, and S.-F. Chang. Query-adaptive image search with hash codes. IEEE Transactions on Multimedia, 15(2):442–453, 2013. [52] Y. Jing, D. Liu, D. Kislyuk, A. Zhai, J. Xu, J. Donahue, and S. Tavel. Visual search at pinterest. In KDD, pages 1889–1898, 2015. [53] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734, 2017. [54] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power method for sparse principal component analysis. J. Mach. Learn. Res., 11:517–553, Mar. 2010. [55] H. Kaiming, Z. Xiangyu, R. Shaoqing, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. [56] Y. Kalantidis, C. Mellina, and S. Osindero. Cross-dimensional weighting for aggregated deep convolutional features. In ECCV Workshops, pages 685–701, 2016. [57] L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. How flickr helps us make sense of the world: context and content in community-contributed media collections. In ACM Multimedia, pages 631–640, 2007. [58] L. Kennedy, M. Slaney, and K. Weinberger. Reliable tags using image similarity: mining specificity and expertise from large-scale multimedia databases. In Proceedings of the 1st workshop on Web-scale multimedia corpus, 2009. [59] M. H. Kiapour, X. Han, S. Lazebnik, A. C. Berg, and T. L. Berg. Where to buy it: Matching street clothing photos in online shops. In ICCV, 2015. [60] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097–1105, 2012. [61] Y. Kuo, W. Cheng, H. Lin, and W. H. Hsu. Unsupervised semantic feature discovery for image object retrieval and tag refinement. IEEE Trans. Multimedia, 14(4):1079–1090, 2012. [62] Y. Kuo and W. H. Hsu. Dehashing: Server-side context-aware feature reconstruction for mobile visual search. IEEE Trans. Circuits Syst. Video Techn., 27(1):139–148, 2017. [63] Y.-H. Kuo, H.-T. Lin, W.-H. Cheng, Y.-H. Yang, and W. H. Hsu. Unsupervised auxiliary visual words discovery for large-scale image object retrieval. In IEEE Conf. on Computer Vision and Pattern Recognition, 2011. [64] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In Neural Information Processing Systems, pages 801–808, 2006. [65] X. Li, C. G. M. Snoek, and M. Worring. Learning tag relevance by neighbor voting for social image retrieval. In Multimedia Information Retrieval, pages 180–187, 2008. [66] X. Li, C. G. M. Snoek, and M. Worring. Unsupervised multi-feature tag relevance learning for social image retrieval. In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 10–17, 2010. [67] T.-Y. Lin, Y. Cui, S. Belongie, and J. Hays. Learning deep representations for ground-to-aerial geolocalization. In CVPR, 2015. [68] Z. Liu, H. Li, L. Zhang, W. Zhou, and Q. Tian. Cross-indexing of binary SIFT codes for large-scale image search. IEEE Transactions on Image Processing, 23(5):2047–2057, 2014. [69] Z. Liu, H. Li, W. Zhou, T. Rui, and Q. Tian. Making residual vector distribution uniform for distinctive image representation. IEEE Transactions on Circuits and Systems for Video Technology, 26(2):375–384, 2016. [70] Z. Liu, H. Li, W. Zhou, R. Zhao, and Q. Tian. Contextual hashing for large-scale image search. IEEE Transactions on Image Processing, 23(4):1606–1614, 2014. [71] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In CVPR, 2016. [72] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision, 60 (2):91–110, 2004. [73] S. Lu, T. Mei, J. Wang, J. Zhang, Z. Wang, and S. Li. Exploratory product image search with circle-to-search interaction. IEEE Trans. Circuits Syst. Video Techn., 25(7):1190–1202, 2015. [74] H. Ma, J. Zhu, M. R.-T. Lyu, and I. King. Bridging the semantic gap between image contents and tags. IEEE Transactions on Multimedia, 12 (5):462–473, 2010. [75] A. Mahendran and A. Vedaldi. Salient deconvolutional networks. In European Conference on Computer Vision, 2016. [76] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In International Conference on Machine Learning, 2009. [77] J. Mairal, F. R. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, pages 19–60, 2010. [78] P. K. Mallapragada, R. Jin, and A. K. Jain. Online visual vocabulary pruning using pairwise constraints. In IEEE Conf. on Computer Vision and Pattern Recognition, 2010. [79] V. Mezaris, H. Doulaverakis, S. Herrmann, B. Lehane, I. Kompatsiaris, and M. G. Strintzis. Combining textual and visual information processing for interactive video retrieval: SCHEMA’s participation in TRECVID 2004. In TRECVID Workshop, 2004. [80] A. Mikulík, M. Perdoch, O. Chum, and J. Matas. Learning vocabularies over a fine quantization. International Journal of Computer Vision, 103(1):163–175, 2013. [81] E. Mohedano, K. McGuinness, N. E. O’Connor, A. Salvador, F. Marques, and X. Giro-i Nieto. Bags of local convolutional features for scalable instance search. In ICMR, pages 327–331, 2016. [82] J. Y.-H. Ng, F. Yang, and L. S. Davis. Exploiting local features from deep networks for image retrieval. In CVPR Workshops, 2015. [83] D. Nistér and H. Stewenius. Scalable recognition with a vocabulary tree. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 2161–2168, 2006. [84] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. Large-scale image retrieval with attentive deep local features. In ICCV, 2017. [85] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, pages 3384–3391, 2010. [86] K. B. Petersen and M. S. Pedersen. The matrix cookbook, nov 2012. Version 20121115. [87] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In IEEE Conference on Computer Vision and Pattern Recognition, 2007. [88] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In IEEE Conf. on Computer Vision and Pattern Recognition, 2008. [89] J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor learning for efficient retrieval. In European Conference on Computer Vision, 2010. [90] P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to segment object candidates. In NIPS, pages 1990–1998, 2015. [91] S. Qi, K. Zawlin, H. Zhang, X. Wang, K. Gao, L. Yao, and T. seng Chua. Saliency meets spatial quantization: A practical framework for large scale product search. In IEEE ICME Workshops, 2016. [92] F. Radenović, G. Tolias, and O. Chum. CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples. In ECCV, 2016. [93] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, 2007. [94] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-theshelf: An astounding baseline for recognition. In CVPR Workshops, pages 512–519, 2014. [95] A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. A baseline for visual instance retrieval with deep convolutional networks. In ICLR Workshop, 2015. [96] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015. [97] A. Salvador, X. Giro-i Nieto, F. Marques, and S. Satoh. Faster r-cnn features for instance search. In CVPR Workshops, 2016. [98] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descriptors using convex optimisation. IEEE TPAMI, 2014. [99] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. [100] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In IEEE International Conference on Computer Vision, volume 2, pages 1470–1477, 2003. [101] A. F. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns and TRECVid. In Multimedia information retrieval, 2006. [102] V. L. T. Trzcinski, M. Christoudias and P. Fua. Boosting Binary Keypoint Descriptors. In CVPR, 2013. [103] B. Thomee, E. M. Bakker, and M. S. Lew. TOP-SURF: a visual words toolkit. In Proceedings of the international conference on Multimedia, 2010. [104] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval with integral max-pooling of CNN activations. In ICLR, 2016. [105] T. Trzcinski, M. Christoudias, and V. Lepetit. Learning image descriptors with boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3):597–610, 2015. [106] T. Trzcinski, M. Christoudias, V. Lepetit, and P. Fua. Boosting Binary Keypoint Descriptors. In Computer Vision and Pattern Recognition, 2013. [107] P. Turcot and D. Lowe. Better matching with fewer features: The selection of useful features in large database recognition problems. In ICCV Workshop on Emergent Issues in Large Amounts of Visual Data, pages 2109–2116, 2009. [108] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for matlab. In ACM Multimedia, 2015. [109] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large scale search. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012. [110] J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to hash for indexing big data—a survey. Proceedings of the IEEE, 104(1):34–57, 2016. [111] X. Wang, K. Liu, and X. Tang. Query-specific visual semantic spaces for web image re-ranking. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 857–864, 2011. [112] X. Wang, Z. Sun, W. Zhang, Y. Zhou, and Y.-G. Jiang. Matching user photos to online products with robust deep features. In ACM ICMR, 2016. [113] X.-J. Wang, W.-Y. Ma, G.-R. Xue, and X. Li. Multi-model similarity propagation and its application for web image retrieval. In ACM Multimedia, pages 944–951, 2004. [114] X.-J. Wang, L. Zhang, F. Jing, and W.-Y. Ma. Annosearch: Image auto-annotation by search. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 1483–1490, 2006. [115] X.-J. Wang, L. Zhang, M. Liu, Y. Li, and W.-Y. Ma. ARISTA - image search to annotation on billions of web photos. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 2987–2994, 2010. [116] P. Weinzaepfel, H. Jégou, and P. Pérez. Reconstructing an image from its local descriptors. In IEEE Computer Vision and Pattern Recognition, 2011. [117] L. Wu, S. C. Hoi, and N. Yu. Semantics-preserving bag-of-words models for efficient image annotation. In ACM workshop on Large-scale multimedia retrieval and mining, pages 19–26, 2009. [118] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, pages 2048–2057, 2015. [119] H.-F. Yang, K. Lin, and C.-S. Chen. Cross-batch reference learning for deep classification and retrieval. In ACM Multimedia, pages 1237–1246, 2016. [120] Y.-H. Yang, P.-T. Wu, C.-W. Lee, K.-H. Lin, and W. H. Hsu. Contextseer: Context search and recommendation at query time for shared consumer photos. In ACM Multimedia, 2008. [121] C.-Y. Yeh, Y.-M. Hsu, H. Huang, H.-W. Jheng, Y.-C. Su, T.-H. Chiu, and W. Hsu. Me-link: Link me to the media – fusing audio and visual cues for robust and efficient mobile media interaction. In Proceedings of the 23rd International Conference on World Wide Web, pages 147–150, 2014. [122] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In NIPS, pages 3320–3328, 2014. [123] F. X. Yu, S. Kumar, Y. Gong, and S. Chang. Circulant binary embedding. In Proceedings of the 31th International Conference on Machine Learning, pages 946–954, 2014. [124] H. Yue, X. Sun, J. Yang, and F. Wu. Cloud-based image coding for mobile devices - toward thousands to one compression. IEEE Transactions on Multimedia, 15(4):845–857, 2013. [125] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818–833, 2014. [126] A. Zhai, D. Kislyuk, Y. Jing, M. Feng, E. Tzeng, J. Donahue, Y. L. Du, and T. Darrell. Visual discovery at pinterest. In WWW, 2017. [127] N. Zhang, T. Mei, X.-S. Hua, L. Guan, and S. Li. Taptell: Interactive visual search for mobile task recommendation. JVCI, May 2015. [128] X. Zhang, Z. Li, L. Zhang, W. Ma, and H. Shum. Efficient indexing for large scale visual search. In IEEE International Conference on Computer Vision, pages 1103–1110, 2009. [129] S. Zhao, Y. Xu, and Y. Han. Large-scale e-commerce image retrieval with topweighted convolutional neural networks. In ICMR, pages 285–288, 2016. [130] L. Zheng, Y. Yang, and Q. Tian. Sift meets cnn: A decade survey of instance retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. [131] W. Zhou, M. Yang, H. Li, X. Wang, Y. Lin, and Q. Tian. Towards codebookfree: Scalable cascaded hashing for mobile image search. IEEE Transactions on Multimedia, 16(3):601–611, 2014.
|