|
[1] A. K.Sankaran andJ. P.Rothstein, “Effect of viscoelasticity on liquid transfer during gravure printing,” J. Nonnewton. Fluid Mech., vol. 175–176, pp. 64–75, 2012. [2] S.Kumar, “Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines,” Annu. Rev. Fluid Mech., vol. 47, no. 1, pp. 67–94, 2015. [3] P.Hahne, E.Hirth, I. E.Reis, K.Schwichtenberg, W.Richtering, F. M.Horn, andU.Eggenweiler, “Progress in thick-film pad printing technique for solar cells,” Sol Energy Mater Sol Cells, vol. 65, pp. 399–407, 2001. [4] Y.Mikami, Y.Nagae, Y.Mori, K.Kuwabara, T.Saito, H.Hayanma, H.Asada, Y.Akimoto, M.Kobayashi, S.Okazaki, K.Asaka, H.Matsui, K.Nakamura, andE.Kaneko, “A new patterning process concept for large-area transistor circuit fabrication without using an optical mask aligner,” IEEE Trans Electron Devices, vol. 41, no. 3, pp. 306–314, 1994. [5] J. A.Lee, J. P.Rothstein, andM.Pasquali, “Computational study of viscoelastic effects on liquid transfer during gravure printing,” J. Nonnewton. Fluid Mech., vol. 199, pp. 1–11, 2013. [6] R. H.Baughman, A. A.Zakhidov, andW. A.DeHeer, “Carbon Nanotubes—the Route Toward Applications,” Science (80-. )., vol. 297, no. 5582, pp. 787–792, 2002. [7] N. H.Thomson, A. J.Kulik, W.Benoit, andL.Zuppiroli, “Mechanical properties of carbon nanotubes,” Appl. Phys. A, vol. 69, no. 3, pp. 255–260, 1999. [8] A.Béduer, F.Sechepine, E.Flahaut, andC.Vieu, “A simple and versatile micro contact printing method for generating carbon nanotubes patterns on various substrates,” Microelectron. Eng., vol. 97, pp. 301–305, 2012. [9] V. K.Sharma, S.Mitra, G.Verma, P. A.Hassan, V. G.Sakai, andR.Mukhopadhyay, “Internal Dynamics in SDS Micelles: Neutron Scattering Study,” J. Phys. Chem. B, vol. 114, no. 51, pp. 17049–17056, 2010. [10] M. A.Sabiha, R. M.Mostafizur, R.Saidur, andS.Mekhilef, “Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids,” Int. J. Heat Mass Transf., vol. 93, pp. 862–871, 2016. [11] L.Vaisman, G.Marom, andH. D.Wagner, “Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers,” Adv. Funct. Mater., vol. 16, no. 3, pp. 357–363, 2006. [12] L.Jiang, L.Gao, andJ.Sun, “Production of aqueous colloidal dispersions of carbon nanotubes,” J. Colloid Interface Sci., vol. 260, no. 1, pp. 89–94, 2003. [13] P.Angelikopoulos andH.Bock, “The science of dispersing carbon nanotubes with surfactants,” Phys. Chem. Chem. Phys., vol. 14, no. 27, p. 9546, 2012. [14] S.Lin, A. J.Hilmer, J. D.Mendenhall, M. S.Strano, andD.Blankschtein, “Molecular Perspective on Diazonium Adsorption for Controllable Functionalization of Single-Walled Carbon Nanotubes in Aqueous Surfactant Solutions,” J. Am. Chem. Soc., vol. 134, pp. 8194–8204, 2012. [15] M.Sammalkorpi, A. Z.Panagiotopoulos, andM.Haataja, “Structure and Dynamics of Surfactant and Hydrocarbon Aggregates on Graphite: A Molecular Dynamics Simulation Study,” J. Phys. Chem. B, vol. 112, no. 10, pp. 2915–2921, 2008. [16] S.-S.Park, Y.Jeon, M.Cho, C.Bai, D.-Y.Lee, andJ.Shim, “The FEM based liquid transfer model in gravure offset printing using phase field method,” Microsyst. Technol., vol. 18, no. 12, pp. 2027–2034. [17] C.-J.Shih, S.Lin, M. S.Strano, andD.Blankschtein, “Understanding the Stabilization of Single-Walled Carbon Nanotubes and Graphene in Ionic Surfactant Aqueous Solutions: Large-Scale Coarse-Grained Molecular Dynamics Simulation-Assisted DLVO Theory,” J. Phys. Chem. C, vol. 119, no. 2, pp. 1047–1060, 2015. [18] F. M.Machado, C. P.Bergmann, E. C.Lima, M. A.Adebayo, andS. B.Fagan, “Adsorption of a Textile Dye from Aqueous Solutions by Carbon Nanotubes,” Mater. Res., vol. 17, pp. 153–160, 2014. [19] L. D. T.Prola, E.Acayanka, E. C.Lima, C. S.Umpierres, J. C. P.Vaghetti, W. O.Santos, S.Laminsi, andP. T.Djifon, “Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution,” Ind. Crops Prod., vol. 46, pp. 328–340, 2013. [20] Y.Liu andY. J.Liu, “Biosorption isotherms, kinetics and thermodynamics,” Sep. Purif. Technol., vol. 61, no. 3, pp. 229–242, 2008. [21] F.Szabadvary, “Indicators: A hisroical perspective,” J. Chem. Educ., vol. 41, no. 5, p. 285, 1964. [22] F. E.Hizir andD. E.Hardt, “Effect of Substrate Contact Angle on Ink Transfer in Flexographic Printing,” pp. 2–5, 2014. [23] Y.Kim, S.Park, andK.Shin, “Effect of cycloid movement on plate-to-roll gravure offset printing,” Microsyst. Technol., vol. 22, no. 2, pp. 357–365, 2016. [24] S.Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991. [25] S.Iijima andT.Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, 1993. [26] D. S.Bethune, C. H.Kiang, M. S.DeVries, G.Gorman, R.Savoy, J.Vazquez, andR.Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 585, pp. 605–607, 1993. [27] R.Saito, G.Dresselhaus, andM. S.Dresslhaus, Physical Nanotubes, Properties of Carbon. London and Imperial College Press, 1998. [28] M. I.Maksud, M. S.Yusof, Z.Embong, M. N.Nodin, andN. A.Rejab, “An Investigation on Printability of Carbon Nanotube (CNTs) Inks by Flexographic onto Various Substrates,” Int. J. Mater. Sci. Engineeing, vol. 2, no. 1, pp. 49–55, 2014. [29] T.Guo, P.Nikolaev, A.Thess, D. T.Colbert, andR. E.Smalley, “Catalytic growth of single-walled manotubes by laser vaporization,” Chem. Phys. Lett., vol. 243, no. 1, pp. 49–54, 1995. [30] T. W.Ebbesen andP. M.Ajayan, “Large-scale synthesis of carbon nanotubes,” Nature, vol. 358, pp. 220–222, 1992. [31] M.Endo, K.Takeuchi, S.Igarashi, K.Kobori, M.Shiraishi, andH. W.Kroto, “The production and structure of pyrolytic carbon nanotubes (PCNTs),” J. Phys. Chem. Solids, vol. 54, no. 12, pp. 1841–1848, 1993. [32] P. H.Xiang, C.Liu, Y.Tong, M.Liu, andH. M.Cheng, “Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method,” J. Mater. Res., vol. 16, no. 9, pp. 2526–2529, 2001. [33] J. N.Coleman, A. B.Dalton, S.Curran, A.Rubio, A. P.Davey, A.Drury, B.McCarthy, B.Lahr, P. M.Ajayan, S.Roth, R. C.Barklie, andW. J.Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater., vol. 12, no. 2, pp. 213–216, 2000. [34] A. B.Dalton, C.Stephen, J. N.Coleman, B.McCarthy, M.Ajayan, P, P.Bernier, W. J.Blau, andH. J.Byrne, “Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes,” J. Phys. Chem. B, vol. 104, no. 43, pp. 10012–10016, 2000. [35] M. C.Ncibi andM.Sillanpää, “Mesoporous carbonaceous materials for single and simultaneous removal of organic pollutants: Activated carbons vs. carbon nanotubes,” J. Mol. Liq., vol. 207, pp. 237–247, 2015. [36] L.Vaisman, H. D.Wagner, andG.Marom, “The role of surfacetants in dispersion of carbon nanotubes,” Adv. Colloid Interface Sci., vol. 128–130, no. 21, pp. 37–46, 2006. [37] P.Poulin, B.Vigolo, andP.Launois, “Films and fibers of oriented single wall nanotubes,” Carbon N. Y., vol. 40, no. 10, pp. 1741–1749, 2002. [38] M. F.Islam, E.Rojas, D. M.Bergey, A. T.Johnson, andA. G.Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett., vol. 3, no. 2, pp. 269–273, 2003. [39] V. C.Moore, M. S.Strano, E. H.Haroz, R. H.Hauge, R. E.Smalley, J.Schmidt, andY.Talmon, “Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants,” Nano Lett., vol. 3, no. 10, pp. 1379–1382, 2003. [40] T.Graham, “Liquid Diffusion Applied to Analysis,” Philos. Trans. R. Soc. London, vol. 151, no. 0, pp. 183–224, 1861. [41] H.Helmholtz, “Studien über electrische Grenzschichten,” Ann. Phys., vol. 243, no. 7, pp. 337–382, 1879. [42] M.Gouy, “Sur la constitution de la charge électrique à la surface d’un électrolyte,” J. Phys. Théorique Appliquée, vol. 9, no. 1, pp. 457–468, 1910. [43] D. L.Chapman, “A contribution to the theory of electrocapillarity,” Philos. Mag., vol. 25, no. 148, pp. 475–481, 1913. [44] H. O.Stern, “ZUR THEORIE DER ELEKTROLYTISCHEN DOPPELSCHICHT,” Zeitschrift für Elektrochemie und Angew. Phys. Chemie, vol. 30, no. 21–22, pp. 508–516, 1924. [45] J. H.Masliyah andS.Bhattacharjee, Electrokinetic and Colloid Transport Phenomena. 2006. [46] Y.Xia andG. M.Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci., vol. 28, no. 12, pp. 153–184, 1998. [47] T. M.Lee, T. G.Kang, J. S.Yang, J.Jo, K. Y.Kim, B. O.Choi, andD. S.Kim, “Drop-on-demand solder droplet jetting system for fabricating microstructure,” IEEE Trans. Electron. Packag. Manuf., vol. 31, no. 3, pp. 202–210, 2008. [48] D.Tobjörk, N. J.Kaihovirta, T.Mäkelä, F. S.Pettersson, andR.Österbacka, “All-printed low-voltage organic transistors,” Org. Electron. physics, Mater. Appl., vol. 9, no. 6, pp. 931–935, 2008. [49] M.Pudas, “The absorption Ink transfer mechanism of gravure offset printing for electronic circuitry,” IEEE Trans. Electron. Packag. Manuf., vol. 25, no. 4, pp. 335–343, 2002. [50] T. M.Lee, Y. J.Choi, S. Y.Nam, C. W.You, D. Y.Na, H. C.Choi, D. Y.Shin, K. Y.Kim, andK. I.Jung, “Color filter patterned by screen printing,” Thin Solid Films, vol. 516, no. 21, pp. 7875–7880, 2008. [51] H.Kipphan, Handbook of Print Media. Springer Berlin Heidelberg, 2001. [52] M. T.Pudas, Gravure-offset printing in the manufacture of ultra-fine-line thick films for electronics. 2004. [53] R.Webster, “Fine Line Screen Printing Yields as a Function of Physical Design Parameters,” Transations Manuf. Technol., vol. 4, no. 1, pp. 14–20, 1975. [54] A. C.Huebler, F.Doetz, H.Kempa, H. E.Katz, M.Bartzsch, N.Brandt, I.Hennig, U.Fuegmann, S.Vaidyanathan, J.Granstrom, S.Liu, A.Sydorenko, T.Zillger, G.Schmidt, K.Preissler, E.Reichmanis, P.Eckerle, F.Richter, T.Fischer, andU.Hahn, “Ring oscillator fabricated completely by means of mass-printing technologies,” Org. Electron. physics, Mater. Appl., vol. 8, no. 5, pp. 480–486, 2007. [55] R.Søndergaard, M.Hösel, D.Angmo, T. T.Larsen-Olsen, andF. C.Krebs, “Roll-to-roll fabrication of polymer solar cells,” Mater. Today, vol. 15, no. 1–2, pp. 36–49, 2012. [56] W.Villanueva, J.Sjödahl, M.Stjernström, J.Roeraade, andG.Amberg, “Microdroplet deposition under a liquid medium,” Langmuir, vol. 23, no. 3, pp. 1171–1177, 2007. [57] A.Lutfurakhmanov, G. K.Loken, D. L.Schulz, andI. S.Akhatov, “Capillary-based liquid microdroplet deposition Capillary-based liquid microdroplet deposition,” Appl. Phys. Lett., vol. 97, no. 124107, pp. 1–4, 2010. [58] Y.Yuan andR. T.Lee, “Contact Angle and Wetting Properties,” in Surface Science Techniques, 2013, pp. 3–34. [59] W. A.Zisman, “Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution,” Contact Angle, Wettability, Adhes., vol. 43, no. 43, pp. 1–51, 1964. [60] T.Young, “An Essay on the Cohesion of Fluids,” Philos. Trans. R. Soc. London, vol. 95, pp. 65–87, 1805. [61] K. J.Ruschak, “COATING FLOWS,” Annu. Rev. Fluid Mech.iew Fluid Mech., vol. 17, pp. 65–89, 1985. [62] S. J.Weinstein andK. J.Ruschak, “Coating Flows,” Annu. Rev. Fluid Mech., vol. 36, pp. 29–53, 2004. [63] F.Ghadiri, D. H.Ahmed, H. J.Sung, andE.Shirani, “Non-Newtonian ink transfer in gravure-offset printing,” Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 308–317, 2011. [64] W.Huang, S.Lee, H.Jin, T.Lee, andD.Kim, “International Journal of Heat and Fluid Flow Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing,” Int J Heat Fluid Flow, vol. 29, pp. 1436–1446, 2008. [65] T.Hubbard, Encyclopedia of Surface and Colloid Science. New York, 2002. [66] S. H.Davis, L. M.Hocking, andS. H.Davis, “Spreading and imbibition of viscous liquid on a porous base,” vol. 48, no. 1999, 2012. [67] S. H.Davis andL. M.Hocking, “Spreading and imbibition of viscous liquid on a porous base. II,” Phys. Fluids, vol. 12, no. 7, pp. 1646–1655, 2000. [68] A.Ramkrishnan andS.Kumar, “Electrohydrodynamic effects in the leveling of coatings,” Chem. Eng. Sci., vol. 101, pp. 785–799, 2013. [69] J. H.Snoeijer andB.Andreotti, “Moving Contact Lines: Scales, Regimes, and Dynamical Transitions,” Annu. Rev. Fluid Mech., vol. 45, pp. 269–292, 2013. [70] E.Ramé andS.Garoff, “Microscopic and Macroscopic Dynamic Interface Shapes and the Interpretation of Dynamic Contact Angles,” J. Colloid Interface Sci., vol. 177, no. 1, pp. 234–244, 1996. [71] D.Frenkel andB.Smit, Understanding Molecular Simulation: From Algorithms to Applications (Computational Science). 2002. [72] J. H.Irving andJ. G.Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” J. Chem. Phys., vol. 18, no. 6, pp. 817–829, 1950. [73] M. P.Allen andD. J.Tildesley, “Computer Simulation of Liquids.” 1991. [74] L.Verlet, “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properites of Lennard-Jones Molecules,” Phys. Rev., vol. 159, no. 1, pp. 98–103, 1967. [75] P.Atkin andJ.Paula, Atkins’ Physical chemistry. 2006. [76] P. M.Morse, “DIATOMIC MOLECULES ACCORDING TO THE WAVE MECHANICS. II. VIBRATIONAL LEVELS,” Phys. Rev., vol. 34, no. 1, pp. 57–64, 1929. [77] J. E.Jones, “On the Determination of Molecular Fields,” 1924. [78] M.Born andJ. E.Mayer, “Zur Gittertheorie der Zinkblende,” Zeitschrift für Phys. A Hadron. Nucl., vol. 75, pp. 1–18, 1932. [79] D. L.Cheung, L.Anton, M. P.Allen, andA. J.Masters, “Computer simulation of liquids and liquid crystals,” Computer Physics Communications, vol. 179, no. 1–3. pp. 61–65, 2008. [80] A. R.Leach, “Molecular Modelling: Principles and Applications.” p. 744, 2001. [81] D.Van DerSpoel, E.Lindahl, B.Hess, G.Groenhof, A. E.Mark, andH. J. C.Berendsen, “GROMACS: Fast, flexible, and free,” J. Comput. Chem., vol. 26, no. 16, pp. 1701–1718, 2005. [82] S. J.Marrink, H. J.Risselada, S.Yefimov, D. P.Tieleman, andA. H.DeVries, “The MARTINI force field: Coarse grained model for biomolecular simulations,” J. Phys. Chem. B, vol. 111, no. 27, pp. 7812–7824, 2007. [83] D.Wu andX.Yang, “Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures,” J. Phys. Chem. B, vol. 116, no. 39, pp. 12048–12056, 2012. [84] S.Jalili andM.Akhavan, “A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 352, no. 1–3, pp. 99–102, 2009. [85] S. O.Yesylevskyy, L.V.Schäfer, D.Sengupta, andS. J.Marrink, “Polarizable Water Model for the Coarse-Grained MARTINI Force Field,” PLoS Comput. Biol., vol. 6, no. 6, p. e1000810, 2010. [86] S. J.Marrink, A. H.deVries, andA. E.Mark, “Coarse Grained Model for Semiquantitative Lipid Simulations,” J. Phys. Chem. B, vol. 108, no. 2, pp. 750–760, 2004. [87] F. M.Machado, C. P.Bergmann, E. C.Lima, M. A.Adebayo, andS. B.Fagan, “Adsorption of a Textile Dye from Aqueous Solutions by Carbon Nanotubes,” Mater. Res., vol. 17(S.1), pp. 153–160, 2014. [88] H.Ohshima, “Surface Charge Density/Surface Potential Relationship for a Cylindrical Particle in an Electrolyte Solution,” J. Colloid Interface Sci., vol. 200, no. 2, pp. 291–297, 1998. [89] J. N.Coleman, “Liquid-phase exfoliation of nanotubes and graphene,” Adv. Funct. Mater., vol. 19, no. 23, pp. 3680–3695, 2009. [90] L. A.Girifalco, M.Hodak, andR. S.Lee, “Carbon nanotubes, buckyballs, ropes, and a universal graphitic poten,” Phys. Rev., vol. 62, no. 19, pp. 104–110, 2000. [91] D.van derSpoel, H. J.Vogel, andH. J. C.Berendsen, “Molecular dynamics simulations of N-terminal peptides from a nucleotide binding protein,” Proteins Struct. Funct. Genet., vol. 24, no. 4, pp. 450–466, 1996. [92] S.-R.Hysing, “Numerical Simulation of Immiscible Fluids with FEM Level Set Techniques Dissertation Doktors der Naturwissenschaften,” 2007. [93] J. W.Cahn andJ. E.Hilliard, “Free Energy of a Nonuniform System. I. Interfacial Free Energy,” J. Chem. Phys., vol. 28, no. 2, pp. 258–267, 1958. [94] J.Kim, “Phase-fieldmodels formulti-component fluid flows,” Commun. Comput. Phys., vol. 12, no. 3, pp. 613–661, 2012. [95] N. R.Tummala andA.Striolo, “Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics,” Phys. Rev. E, vol. 80, no. 2, p. 21408, 2009. [96] Z.Xu, X.Yang, andZ.Yang, “A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies,” Nano Lett., vol. 10, no. 3, pp. 985–991, 2010. [97] S.Lin, A. J.Hilmer, J. D.Mendenhall, M. S.Strano, andD.Blankschtein, “Molecular Perspective on Diazonium Adsorption for Controllable Functionalization of Single-Walled Carbon Nanotubes in Aqueous Surfactant Solutions Molecular Perspective on Diazonium Adsorption for Controllable Functionalization of Single-Walled Carbon Nan,” J. Am. Chem. Soc., vol. 134, pp. 8194–8204, 2012. [98] B. P.Binks, Modern Characterization Methods of Surfactant Systems. 1999. [99] M. I.Ltd, “Zeta potential: An Introduction in 30 minutes,” 2011. [100] B.White, S.Banerjee, O.Stephen, N. J.Turro, andI. P.Herman, “Zeta-Potential Measurements of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes,” J. Phys. Chem. C, vol. 111, no. 37, pp. 13684–13690, 2007. [101] 黃湘雲, “結合DLVO理論與粗格化分子動力學模擬單壁奈米碳管於離子活性劑水溶液之研究,” 2016. [102] S.-S.Park, J.Youngwon, C.Migyung, C.Bai, D.Lee, andJ.Shim, “The FEM based liquid transfer model in gravure offset printing using phase field method,” Microsyst. Technol., vol. 18, pp. 2027–2034, 2012.
|