跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許惠玟
研究生(外文):Hsu, Hui-Wen
論文名稱:利用粗格化分子動力學以及相場法模擬柔版印刷製程的油墨行為
論文名稱(外文):Modeling of the Behavior of Ink in Flexographic Printing by Using the Method of Coarse-Grained Molecular Dynamic Simulation and Phase Field Method
指導教授:鄒年棣
指導教授(外文):Tsou, Nien-Ti
口試委員:羅友杰廖英志
口試委員(外文):Lo,Yu-ChiehLiao, Ying-Chih
口試日期:2017-08-04
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:84
中文關鍵詞:分子動力學相場法膠體溶液
外文關鍵詞:molecular dynamicsphase field methodcolloidal disperisonzeta potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
導電油墨柔印製程是以具導電性質的懸浮溶液快速印製出電路之技術。此油墨印刷製程之關鍵在於油墨液體於網輥與版輥間的傳遞正確模擬。其需考慮多重物理機制,例如:油墨分散品質、流體力學及液氣兩相介面的問題,對此我們使用相場法計算多物理耦合的油墨液滴在印刷時的轉移過程。另外,單壁奈米碳管因其具有特殊的導電性質,也常被當作柔印製程裡的油墨材料。單壁奈米碳管在水溶液中的分散穩定性一直以來都是相當重要的議題。在本研究中,我們使用粗格化分子動力學 (Coarse-grained Molecular Dynamics) 與Derjaguin−Landau− Verwey−Overbeek (DLVO) 理論來預測碳管於水溶液中的穩定性。
分子動力學的模擬中,我們添加不同濃度的十二烷基硫酸鈉 (SDS) 活性劑 與三種不同管徑的碳管,分別是 (6, 6)、(12, 12)、(18, 18) SWCNTs 。利用 Langmuir isotherm 來描述 SDS 吸附於碳管上與懸浮在溶液中的數量關係。隨著吸附物 SDS 吸附量的增加,可防止碳管聚集的電雙層斥力會跟著上升。接著使用 DLVO 理論計算不同管徑的碳管在不同 SDS 活性劑濃度下的能量障壁,藉此預測碳管於溶液中的分散行為。由結果發現在活性劑濃度略大於臨界微胞濃度時,碳管會有最佳的分散效果,此結果與實驗的趨勢相符合。此外,本研究亦估算半徑為 0.35~0.7 nm的碳管,隨活性劑濃度碳管變化的 zeta potential (ζ-potential)。模擬與實驗結果於 SDS 濃度約為 30~80 mM 時, ζ-potential 的值相當接近。
柔印製程的解析度還會受到接觸角、滾輪半徑、油墨黏度等物理現象的影響,因此我們建立一個多物理耦合的平板對滾輪 (plate-to-roll) 的模型。運用 Navier–Stokes equations 來分析水珠流動的力學行為,並配合相場法模擬液氣介面演進,進而預測油墨在不同黏滯度與網輥帶墨速度下的轉移率。在油墨轉移的模擬結果發現,當接觸角愈小,油墨愈傾向於附著。而滾輪半徑愈大,油墨轉移量也會增大。但半徑大到某一程度時,對油墨液滴形同一平板,油墨轉移量上升的程度會趨緩,達一最大值。另外,當接觸角上升,油墨黏度對轉移率的影響會有反轉的現象。這些模擬結果亦和過去文獻做比較,也有相符的結果。故可藉此找出柔印滾輪幾何、油墨材料配比等設計之參考。
The resolution of flexographic printing process determines the quality of the printed electronic devices. The fundamental issues are to determine the quantity of the transferred ink and to produce the colloidal stabilized conductive ink. A commonly used ink material, the single-walled carbon nanotubes (SWCNTs), was chosen to be investigated. Therefore, a computational framework combining the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory with the coarse-grained molecular dynamics (CG-MD) simulations is developed to predict the stability of the SWCNTs in aqueous solutions. The dispersion of SWCNTs in aqueous solutions is an important issue. However, it is a challenging task since it requires the understanding of both macroscopic properties of the solution and the colloidal mechanism at the molecular level.
The various concentration of surfactant, sodium dodecyl sulfate (SDS), is considered to each size of the SWCNTs, including (6, 6), (12, 12) and (18, 18). The Langmuir isotherm model is used to find the relationship between the amount of the adsorbed SDS and the bulk SDS concentration. With the increasing number of the SDS covered on SWCNTs, the surface charge density is also enhanced, and thus, greater electrical double layer repulsion is achieved to prevent the aggregation of the SWCNTs. The potential energy barrier as a function of the radius of the SWCNT and the SDS concentration can then be obtained by using DLVO theory so that the dispersion of the SWCNTs in the solution can be predicted. The results suggest an optimal surfactant concentration which can stabilize the SWCNTs in the solution. Also, we calculate the zeta potential for SWCNTs with the radius of 0.35~0.7 nm which has a good agreement with the experimental results when the concentration of SDS is within 30~80 mM. The current framework is expected to provide the guidance for the design of the concentration of SDS surfactants and the radius of SWCNTs in dispersion experiments.
Furthermore, to study another issue of flexographic printing processes, it is necessary to consider multi-physics mechanics such as fluid mechanics and the interface evolution between liquid and air. In the current work, a multi-physics model was developed by coupling Navier–Stokes equations and phase field method to analyze the behavior of the droplets and to model the air-liquid interface. We proposed a plate-to-roll model to calculate the ink transfer ratio by changing the contact angle, the radius of the roller, and the viscosity of the ink, which affect the flexographic printing. We simulated the effects of these different parameters and compared the results with the literature. Modeling and simulations proposed herein should be useful to improve designs of the geometry of roller, properties of the ink, and printing accuracy.
摘要 i
Abstract iii
Acknowledge v
Contents vi
Figure Captions ix
Table Captions xiii
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Background 4
1.2.1. Carbon Nanotubes 4
1.2.2. Colloidal State and Electric Double-Layer Theory 7
1.2.3. Flexographic Printing Techniques 11
1.2.4. Wetting 13
1.2.5. Simulations on Printing Process 15
Chapter 2. Theories and Methodologies. 19
2.1. Colloidal Dispersion 19
2.1.1. Theories of MD Simulation 19
2.1.1.1. Equations of Motion 19
2.1.1.2. Potential Energy Functions and Truncated Distance 20
2.1.1.3. Verlet Neighbor List 22
2.1.1.4. Temperature Coupling and Pressure Coupling 23
2.1.2. Model Settings and Experiments 25
2.1.2.1. Simulation Setup 25
2.1.2.2. Experiment Flow 29
2.1.3. Analysis Method 32
2.1.3.1. Application of Langmuir isotherm 32
2.1.3.2. Calculation of Surface Potential 33
2.1.3.3. Calculation of ζ-potential 35
2.2. Printing Process 37
2.2.1. Theories of Computational Fluid Dynamics 37
2.2.1.1. Conservation Laws 38
2.2.1.2. Navier-Stokes Equations 40
2.2.1.3. Phase Field Method 41
2.2.2. Model Settings 43
2.2.3. Analysis Method: Liquid Transfer Ratio 48
Chapter 3. Results and Discussion 49
3.1. Colloidal Dispersion 49
3.1.1. CG-MD Simulations 49
3.1.2. SDS Adsorption and Remainder in the Solution 52
3.1.3. The Surface Electric Potential and the Energy Barrier 55
3.1.4. Model Verification 62
3.2. Flexographic Printing Simulation 65
3.2.1. Effects of the Contact Angle of the Roller 66
3.2.2. Effects of the Viscosity of the Ink 68
3.2.3. Effects of the Radius of the Roller 70
3.2.4. Comparison with Models in the Literature 71
3.2.5. Dimensional Analysis 72
Chapter 4. Conclusions and Future Work 74
4.1. Conclusions 74
4.2. Future Work 76
Reference 78
[1] A. K.Sankaran andJ. P.Rothstein, “Effect of viscoelasticity on liquid transfer during gravure printing,” J. Nonnewton. Fluid Mech., vol. 175–176, pp. 64–75, 2012.
[2] S.Kumar, “Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines,” Annu. Rev. Fluid Mech., vol. 47, no. 1, pp. 67–94, 2015.
[3] P.Hahne, E.Hirth, I. E.Reis, K.Schwichtenberg, W.Richtering, F. M.Horn, andU.Eggenweiler, “Progress in thick-film pad printing technique for solar cells,” Sol Energy Mater Sol Cells, vol. 65, pp. 399–407, 2001.
[4] Y.Mikami, Y.Nagae, Y.Mori, K.Kuwabara, T.Saito, H.Hayanma, H.Asada, Y.Akimoto, M.Kobayashi, S.Okazaki, K.Asaka, H.Matsui, K.Nakamura, andE.Kaneko, “A new patterning process concept for large-area transistor circuit fabrication without using an optical mask aligner,” IEEE Trans Electron Devices, vol. 41, no. 3, pp. 306–314, 1994.
[5] J. A.Lee, J. P.Rothstein, andM.Pasquali, “Computational study of viscoelastic effects on liquid transfer during gravure printing,” J. Nonnewton. Fluid Mech., vol. 199, pp. 1–11, 2013.
[6] R. H.Baughman, A. A.Zakhidov, andW. A.DeHeer, “Carbon Nanotubes—the Route Toward Applications,” Science (80-. )., vol. 297, no. 5582, pp. 787–792, 2002.
[7] N. H.Thomson, A. J.Kulik, W.Benoit, andL.Zuppiroli, “Mechanical properties of carbon nanotubes,” Appl. Phys. A, vol. 69, no. 3, pp. 255–260, 1999.
[8] A.Béduer, F.Sechepine, E.Flahaut, andC.Vieu, “A simple and versatile micro contact printing method for generating carbon nanotubes patterns on various substrates,” Microelectron. Eng., vol. 97, pp. 301–305, 2012.
[9] V. K.Sharma, S.Mitra, G.Verma, P. A.Hassan, V. G.Sakai, andR.Mukhopadhyay, “Internal Dynamics in SDS Micelles: Neutron Scattering Study,” J. Phys. Chem. B, vol. 114, no. 51, pp. 17049–17056, 2010.
[10] M. A.Sabiha, R. M.Mostafizur, R.Saidur, andS.Mekhilef, “Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids,” Int. J. Heat Mass Transf., vol. 93, pp. 862–871, 2016.
[11] L.Vaisman, G.Marom, andH. D.Wagner, “Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers,” Adv. Funct. Mater., vol. 16, no. 3, pp. 357–363, 2006.
[12] L.Jiang, L.Gao, andJ.Sun, “Production of aqueous colloidal dispersions of carbon nanotubes,” J. Colloid Interface Sci., vol. 260, no. 1, pp. 89–94, 2003.
[13] P.Angelikopoulos andH.Bock, “The science of dispersing carbon nanotubes with surfactants,” Phys. Chem. Chem. Phys., vol. 14, no. 27, p. 9546, 2012.
[14] S.Lin, A. J.Hilmer, J. D.Mendenhall, M. S.Strano, andD.Blankschtein, “Molecular Perspective on Diazonium Adsorption for Controllable Functionalization of Single-Walled Carbon Nanotubes in Aqueous Surfactant Solutions,” J. Am. Chem. Soc., vol. 134, pp. 8194–8204, 2012.
[15] M.Sammalkorpi, A. Z.Panagiotopoulos, andM.Haataja, “Structure and Dynamics of Surfactant and Hydrocarbon Aggregates on Graphite: A Molecular Dynamics Simulation Study,” J. Phys. Chem. B, vol. 112, no. 10, pp. 2915–2921, 2008.
[16] S.-S.Park, Y.Jeon, M.Cho, C.Bai, D.-Y.Lee, andJ.Shim, “The FEM based liquid transfer model in gravure offset printing using phase field method,” Microsyst. Technol., vol. 18, no. 12, pp. 2027–2034.
[17] C.-J.Shih, S.Lin, M. S.Strano, andD.Blankschtein, “Understanding the Stabilization of Single-Walled Carbon Nanotubes and Graphene in Ionic Surfactant Aqueous Solutions: Large-Scale Coarse-Grained Molecular Dynamics Simulation-Assisted DLVO Theory,” J. Phys. Chem. C, vol. 119, no. 2, pp. 1047–1060, 2015.
[18] F. M.Machado, C. P.Bergmann, E. C.Lima, M. A.Adebayo, andS. B.Fagan, “Adsorption of a Textile Dye from Aqueous Solutions by Carbon Nanotubes,” Mater. Res., vol. 17, pp. 153–160, 2014.
[19] L. D. T.Prola, E.Acayanka, E. C.Lima, C. S.Umpierres, J. C. P.Vaghetti, W. O.Santos, S.Laminsi, andP. T.Djifon, “Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution,” Ind. Crops Prod., vol. 46, pp. 328–340, 2013.
[20] Y.Liu andY. J.Liu, “Biosorption isotherms, kinetics and thermodynamics,” Sep. Purif. Technol., vol. 61, no. 3, pp. 229–242, 2008.
[21] F.Szabadvary, “Indicators: A hisroical perspective,” J. Chem. Educ., vol. 41, no. 5, p. 285, 1964.
[22] F. E.Hizir andD. E.Hardt, “Effect of Substrate Contact Angle on Ink Transfer in Flexographic Printing,” pp. 2–5, 2014.
[23] Y.Kim, S.Park, andK.Shin, “Effect of cycloid movement on plate-to-roll gravure offset printing,” Microsyst. Technol., vol. 22, no. 2, pp. 357–365, 2016.
[24] S.Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991.
[25] S.Iijima andT.Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, 1993.
[26] D. S.Bethune, C. H.Kiang, M. S.DeVries, G.Gorman, R.Savoy, J.Vazquez, andR.Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 585, pp. 605–607, 1993.
[27] R.Saito, G.Dresselhaus, andM. S.Dresslhaus, Physical Nanotubes, Properties of Carbon. London and Imperial College Press, 1998.
[28] M. I.Maksud, M. S.Yusof, Z.Embong, M. N.Nodin, andN. A.Rejab, “An Investigation on Printability of Carbon Nanotube (CNTs) Inks by Flexographic onto Various Substrates,” Int. J. Mater. Sci. Engineeing, vol. 2, no. 1, pp. 49–55, 2014.
[29] T.Guo, P.Nikolaev, A.Thess, D. T.Colbert, andR. E.Smalley, “Catalytic growth of single-walled manotubes by laser vaporization,” Chem. Phys. Lett., vol. 243, no. 1, pp. 49–54, 1995.
[30] T. W.Ebbesen andP. M.Ajayan, “Large-scale synthesis of carbon nanotubes,” Nature, vol. 358, pp. 220–222, 1992.
[31] M.Endo, K.Takeuchi, S.Igarashi, K.Kobori, M.Shiraishi, andH. W.Kroto, “The production and structure of pyrolytic carbon nanotubes (PCNTs),” J. Phys. Chem. Solids, vol. 54, no. 12, pp. 1841–1848, 1993.
[32] P. H.Xiang, C.Liu, Y.Tong, M.Liu, andH. M.Cheng, “Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method,” J. Mater. Res., vol. 16, no. 9, pp. 2526–2529, 2001.
[33] J. N.Coleman, A. B.Dalton, S.Curran, A.Rubio, A. P.Davey, A.Drury, B.McCarthy, B.Lahr, P. M.Ajayan, S.Roth, R. C.Barklie, andW. J.Blau, “Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer,” Adv. Mater., vol. 12, no. 2, pp. 213–216, 2000.
[34] A. B.Dalton, C.Stephen, J. N.Coleman, B.McCarthy, M.Ajayan, P, P.Bernier, W. J.Blau, andH. J.Byrne, “Selective Interaction of a Semiconjugated Organic Polymer with Single-Wall Nanotubes,” J. Phys. Chem. B, vol. 104, no. 43, pp. 10012–10016, 2000.
[35] M. C.Ncibi andM.Sillanpää, “Mesoporous carbonaceous materials for single and simultaneous removal of organic pollutants: Activated carbons vs. carbon nanotubes,” J. Mol. Liq., vol. 207, pp. 237–247, 2015.
[36] L.Vaisman, H. D.Wagner, andG.Marom, “The role of surfacetants in dispersion of carbon nanotubes,” Adv. Colloid Interface Sci., vol. 128–130, no. 21, pp. 37–46, 2006.
[37] P.Poulin, B.Vigolo, andP.Launois, “Films and fibers of oriented single wall nanotubes,” Carbon N. Y., vol. 40, no. 10, pp. 1741–1749, 2002.
[38] M. F.Islam, E.Rojas, D. M.Bergey, A. T.Johnson, andA. G.Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett., vol. 3, no. 2, pp. 269–273, 2003.
[39] V. C.Moore, M. S.Strano, E. H.Haroz, R. H.Hauge, R. E.Smalley, J.Schmidt, andY.Talmon, “Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants,” Nano Lett., vol. 3, no. 10, pp. 1379–1382, 2003.
[40] T.Graham, “Liquid Diffusion Applied to Analysis,” Philos. Trans. R. Soc. London, vol. 151, no. 0, pp. 183–224, 1861.
[41] H.Helmholtz, “Studien über electrische Grenzschichten,” Ann. Phys., vol. 243, no. 7, pp. 337–382, 1879.
[42] M.Gouy, “Sur la constitution de la charge électrique à la surface d’un électrolyte,” J. Phys. Théorique Appliquée, vol. 9, no. 1, pp. 457–468, 1910.
[43] D. L.Chapman, “A contribution to the theory of electrocapillarity,” Philos. Mag., vol. 25, no. 148, pp. 475–481, 1913.
[44] H. O.Stern, “ZUR THEORIE DER ELEKTROLYTISCHEN DOPPELSCHICHT,” Zeitschrift für Elektrochemie und Angew. Phys. Chemie, vol. 30, no. 21–22, pp. 508–516, 1924.
[45] J. H.Masliyah andS.Bhattacharjee, Electrokinetic and Colloid Transport Phenomena. 2006.
[46] Y.Xia andG. M.Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci., vol. 28, no. 12, pp. 153–184, 1998.
[47] T. M.Lee, T. G.Kang, J. S.Yang, J.Jo, K. Y.Kim, B. O.Choi, andD. S.Kim, “Drop-on-demand solder droplet jetting system for fabricating microstructure,” IEEE Trans. Electron. Packag. Manuf., vol. 31, no. 3, pp. 202–210, 2008.
[48] D.Tobjörk, N. J.Kaihovirta, T.Mäkelä, F. S.Pettersson, andR.Österbacka, “All-printed low-voltage organic transistors,” Org. Electron. physics, Mater. Appl., vol. 9, no. 6, pp. 931–935, 2008.
[49] M.Pudas, “The absorption Ink transfer mechanism of gravure offset printing for electronic circuitry,” IEEE Trans. Electron. Packag. Manuf., vol. 25, no. 4, pp. 335–343, 2002.
[50] T. M.Lee, Y. J.Choi, S. Y.Nam, C. W.You, D. Y.Na, H. C.Choi, D. Y.Shin, K. Y.Kim, andK. I.Jung, “Color filter patterned by screen printing,” Thin Solid Films, vol. 516, no. 21, pp. 7875–7880, 2008.
[51] H.Kipphan, Handbook of Print Media. Springer Berlin Heidelberg, 2001.
[52] M. T.Pudas, Gravure-offset printing in the manufacture of ultra-fine-line thick films for electronics. 2004.
[53] R.Webster, “Fine Line Screen Printing Yields as a Function of Physical Design Parameters,” Transations Manuf. Technol., vol. 4, no. 1, pp. 14–20, 1975.
[54] A. C.Huebler, F.Doetz, H.Kempa, H. E.Katz, M.Bartzsch, N.Brandt, I.Hennig, U.Fuegmann, S.Vaidyanathan, J.Granstrom, S.Liu, A.Sydorenko, T.Zillger, G.Schmidt, K.Preissler, E.Reichmanis, P.Eckerle, F.Richter, T.Fischer, andU.Hahn, “Ring oscillator fabricated completely by means of mass-printing technologies,” Org. Electron. physics, Mater. Appl., vol. 8, no. 5, pp. 480–486, 2007.
[55] R.Søndergaard, M.Hösel, D.Angmo, T. T.Larsen-Olsen, andF. C.Krebs, “Roll-to-roll fabrication of polymer solar cells,” Mater. Today, vol. 15, no. 1–2, pp. 36–49, 2012.
[56] W.Villanueva, J.Sjödahl, M.Stjernström, J.Roeraade, andG.Amberg, “Microdroplet deposition under a liquid medium,” Langmuir, vol. 23, no. 3, pp. 1171–1177, 2007.
[57] A.Lutfurakhmanov, G. K.Loken, D. L.Schulz, andI. S.Akhatov, “Capillary-based liquid microdroplet deposition Capillary-based liquid microdroplet deposition,” Appl. Phys. Lett., vol. 97, no. 124107, pp. 1–4, 2010.
[58] Y.Yuan andR. T.Lee, “Contact Angle and Wetting Properties,” in Surface Science Techniques, 2013, pp. 3–34.
[59] W. A.Zisman, “Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution,” Contact Angle, Wettability, Adhes., vol. 43, no. 43, pp. 1–51, 1964.
[60] T.Young, “An Essay on the Cohesion of Fluids,” Philos. Trans. R. Soc. London, vol. 95, pp. 65–87, 1805.
[61] K. J.Ruschak, “COATING FLOWS,” Annu. Rev. Fluid Mech.iew Fluid Mech., vol. 17, pp. 65–89, 1985.
[62] S. J.Weinstein andK. J.Ruschak, “Coating Flows,” Annu. Rev. Fluid Mech., vol. 36, pp. 29–53, 2004.
[63] F.Ghadiri, D. H.Ahmed, H. J.Sung, andE.Shirani, “Non-Newtonian ink transfer in gravure-offset printing,” Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 308–317, 2011.
[64] W.Huang, S.Lee, H.Jin, T.Lee, andD.Kim, “International Journal of Heat and Fluid Flow Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing,” Int J Heat Fluid Flow, vol. 29, pp. 1436–1446, 2008.
[65] T.Hubbard, Encyclopedia of Surface and Colloid Science. New York, 2002.
[66] S. H.Davis, L. M.Hocking, andS. H.Davis, “Spreading and imbibition of viscous liquid on a porous base,” vol. 48, no. 1999, 2012.
[67] S. H.Davis andL. M.Hocking, “Spreading and imbibition of viscous liquid on a porous base. II,” Phys. Fluids, vol. 12, no. 7, pp. 1646–1655, 2000.
[68] A.Ramkrishnan andS.Kumar, “Electrohydrodynamic effects in the leveling of coatings,” Chem. Eng. Sci., vol. 101, pp. 785–799, 2013.
[69] J. H.Snoeijer andB.Andreotti, “Moving Contact Lines: Scales, Regimes, and Dynamical Transitions,” Annu. Rev. Fluid Mech., vol. 45, pp. 269–292, 2013.
[70] E.Ramé andS.Garoff, “Microscopic and Macroscopic Dynamic Interface Shapes and the Interpretation of Dynamic Contact Angles,” J. Colloid Interface Sci., vol. 177, no. 1, pp. 234–244, 1996.
[71] D.Frenkel andB.Smit, Understanding Molecular Simulation: From Algorithms to Applications (Computational Science). 2002.
[72] J. H.Irving andJ. G.Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” J. Chem. Phys., vol. 18, no. 6, pp. 817–829, 1950.
[73] M. P.Allen andD. J.Tildesley, “Computer Simulation of Liquids.” 1991.
[74] L.Verlet, “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properites of Lennard-Jones Molecules,” Phys. Rev., vol. 159, no. 1, pp. 98–103, 1967.
[75] P.Atkin andJ.Paula, Atkins’ Physical chemistry. 2006.
[76] P. M.Morse, “DIATOMIC MOLECULES ACCORDING TO THE WAVE MECHANICS. II. VIBRATIONAL LEVELS,” Phys. Rev., vol. 34, no. 1, pp. 57–64, 1929.
[77] J. E.Jones, “On the Determination of Molecular Fields,” 1924.
[78] M.Born andJ. E.Mayer, “Zur Gittertheorie der Zinkblende,” Zeitschrift für Phys. A Hadron. Nucl., vol. 75, pp. 1–18, 1932.
[79] D. L.Cheung, L.Anton, M. P.Allen, andA. J.Masters, “Computer simulation of liquids and liquid crystals,” Computer Physics Communications, vol. 179, no. 1–3. pp. 61–65, 2008.
[80] A. R.Leach, “Molecular Modelling: Principles and Applications.” p. 744, 2001.
[81] D.Van DerSpoel, E.Lindahl, B.Hess, G.Groenhof, A. E.Mark, andH. J. C.Berendsen, “GROMACS: Fast, flexible, and free,” J. Comput. Chem., vol. 26, no. 16, pp. 1701–1718, 2005.
[82] S. J.Marrink, H. J.Risselada, S.Yefimov, D. P.Tieleman, andA. H.DeVries, “The MARTINI force field: Coarse grained model for biomolecular simulations,” J. Phys. Chem. B, vol. 111, no. 27, pp. 7812–7824, 2007.
[83] D.Wu andX.Yang, “Coarse-grained molecular simulation of self-assembly for nonionic surfactants on graphene nanostructures,” J. Phys. Chem. B, vol. 116, no. 39, pp. 12048–12056, 2012.
[84] S.Jalili andM.Akhavan, “A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 352, no. 1–3, pp. 99–102, 2009.
[85] S. O.Yesylevskyy, L.V.Schäfer, D.Sengupta, andS. J.Marrink, “Polarizable Water Model for the Coarse-Grained MARTINI Force Field,” PLoS Comput. Biol., vol. 6, no. 6, p. e1000810, 2010.
[86] S. J.Marrink, A. H.deVries, andA. E.Mark, “Coarse Grained Model for Semiquantitative Lipid Simulations,” J. Phys. Chem. B, vol. 108, no. 2, pp. 750–760, 2004.
[87] F. M.Machado, C. P.Bergmann, E. C.Lima, M. A.Adebayo, andS. B.Fagan, “Adsorption of a Textile Dye from Aqueous Solutions by Carbon Nanotubes,” Mater. Res., vol. 17(S.1), pp. 153–160, 2014.
[88] H.Ohshima, “Surface Charge Density/Surface Potential Relationship for a Cylindrical Particle in an Electrolyte Solution,” J. Colloid Interface Sci., vol. 200, no. 2, pp. 291–297, 1998.
[89] J. N.Coleman, “Liquid-phase exfoliation of nanotubes and graphene,” Adv. Funct. Mater., vol. 19, no. 23, pp. 3680–3695, 2009.
[90] L. A.Girifalco, M.Hodak, andR. S.Lee, “Carbon nanotubes, buckyballs, ropes, and a universal graphitic poten,” Phys. Rev., vol. 62, no. 19, pp. 104–110, 2000.
[91] D.van derSpoel, H. J.Vogel, andH. J. C.Berendsen, “Molecular dynamics simulations of N-terminal peptides from a nucleotide binding protein,” Proteins Struct. Funct. Genet., vol. 24, no. 4, pp. 450–466, 1996.
[92] S.-R.Hysing, “Numerical Simulation of Immiscible Fluids with FEM Level Set Techniques Dissertation Doktors der Naturwissenschaften,” 2007.
[93] J. W.Cahn andJ. E.Hilliard, “Free Energy of a Nonuniform System. I. Interfacial Free Energy,” J. Chem. Phys., vol. 28, no. 2, pp. 258–267, 1958.
[94] J.Kim, “Phase-fieldmodels formulti-component fluid flows,” Commun. Comput. Phys., vol. 12, no. 3, pp. 613–661, 2012.
[95] N. R.Tummala andA.Striolo, “Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics,” Phys. Rev. E, vol. 80, no. 2, p. 21408, 2009.
[96] Z.Xu, X.Yang, andZ.Yang, “A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies,” Nano Lett., vol. 10, no. 3, pp. 985–991, 2010.
[97] S.Lin, A. J.Hilmer, J. D.Mendenhall, M. S.Strano, andD.Blankschtein, “Molecular Perspective on Diazonium Adsorption for Controllable Functionalization of Single-Walled Carbon Nanotubes in Aqueous Surfactant Solutions Molecular Perspective on Diazonium Adsorption for Controllable Functionalization of Single-Walled Carbon Nan,” J. Am. Chem. Soc., vol. 134, pp. 8194–8204, 2012.
[98] B. P.Binks, Modern Characterization Methods of Surfactant Systems. 1999.
[99] M. I.Ltd, “Zeta potential: An Introduction in 30 minutes,” 2011.
[100] B.White, S.Banerjee, O.Stephen, N. J.Turro, andI. P.Herman, “Zeta-Potential Measurements of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes,” J. Phys. Chem. C, vol. 111, no. 37, pp. 13684–13690, 2007.
[101] 黃湘雲, “結合DLVO理論與粗格化分子動力學模擬單壁奈米碳管於離子活性劑水溶液之研究,” 2016.
[102] S.-S.Park, J.Youngwon, C.Migyung, C.Bai, D.Lee, andJ.Shim, “The FEM based liquid transfer model in gravure offset printing using phase field method,” Microsyst. Technol., vol. 18, pp. 2027–2034, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top