跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/11/29 02:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊 雪
研究生(外文):Yang, Xue
論文名稱:體系風險衡量:CoVaR和動態波動率矩陣模型
論文名稱(外文):Systemic Risk Measures: CoVaR and Dynamic Volatility Matrix Models
指導教授:韓傳祥韓傳祥引用關係
指導教授(外文):Han, Chuan-Hsiang
口試委員:陳博現冼芻蕘孫立憲
口試委員(外文):CHEN, BOR-SENSIN, CHOR-YIUSun, Li-Hsien
口試日期:2019-03-07
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:40
中文關鍵詞:動態波動率矩陣模型蒙特卡洛模擬重要性採樣傅里葉變換體系風險
外文關鍵詞:Dynamic Volatility Matrix ModelsMonte Carlo simulationImportance SamplingFourier Transformsystemic risk
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們在一個隨機波動率模型的共同框架下計算了體系風險指標∆CoVaR,並且利用重要性採樣技術來提高蒙特卡洛模擬的準確性。運用Spearman correlation, 將∆CoVaR 識別出的系統重要性的金融機構與其他體系風險指標識別出的排名相比較。本模型至少存在三個優勢。首先,非參數法不依賴對於分佈假設。第二,動態隨機波動率矩陣模型允許我們直接根據∆CoVaR的定義來計算。第三,它使得我們可以在統一框架下計算不同的體系風險指標。
We calculate the systemic risk measure ∆CoVaR in a framework of Dynamic Volatility Matrix Models and apply the technique of importance sampling to augment the accuracy of Monte Carlo simulation. The ranking of systemically important financial institutions (SIFIs) identified by ∆CoVaR will be compared with other systemic risk measure ranking by Spearman correlation. This modelling framework has at least three advantage over the traditional approaches. Firstly, the non-parametric method does not rely on the assumption of distribution. Second, our dynamic stochastic volatility matrix models allow estimating ∆CoVaR directly according to its definition. Third, it allows us to compute different systemic risk measure with the same method that is more suitable for the comparison of different measures.
Chapter 1 Introduction and Literature Review 1
Chapter 2. ∆CoVaR Estimation under Dynamic Volatility Matrix Models 5
2.1 Systemic risk measures 5
2.2 Dynamic Volatility Matrix Models 6
Chapter 3. Volatility Estimation: Fourier Transform Method 8
3.1 Fourier Transform Method 8
3.2 Parameter estimation for stochastic volatility/correlation model 10
3.3 Simulation studies 11
Chapter 4. Importance Sampling: Variance Reduction 17
4.1 Definition of ∆CoVaR 17
4.2 Calculation of ∆CoVaRq under two dimension Geometric Brownian Motions system 17
4.3 Numerical Examples 21
Chapter 5. Empirical Analysis 22
5.1 Data Set 22
5.2 Empirical Results 23
5.2.1 ∆CoVaR computation 23
5.2.3 Compared with other Capital Shortfall Measures 26
5.2.2 System important financial institution identification 30
Conclusion 34
REFERENCE 35
Appendix Ⅰ:Quantile regression to estimate CoVaR 36
Appendix Ⅱ: CoVaR estimation under GARCH-DCC 38
Appendix Ⅲ: SRISK Definition 40
Adrian, T., Brunnermeier, M. K. (2016). CoVaR. The American Economic Review, 106(7), 1705-1741
Acharya V V, Pedersen L H, Philippon T, et al. (2017) Measuring systemic risk [J]. The Review of Financial Studies, 30(1): 2-47.
Mancino M E, Recchioni M C, Sanfelici S. (2017) Fourier-Malliavin volatility estimation: Theory and practice [M]. Springer Briefs in Quantitative Finance: Springer.
Mainik G, Schaanning E. (2014) On dependence consistency of CoVaR and some other systemic risk measures [J]. Statistics & Risk Modeling, 31(1): 49-77.
BISIAS, Dimitrios, et al. (2012) A survey of systemic risk analytics. Annu. Rev. Financ. Econ., 4.1: 255-296.
Brownlees, C., Engle, R. F. (2016). SRISK: A conditional capital shortfall measure of systemic risk. The Review of Financial Studies, 30(1), 48-79.
Change and Han(2011).Corrections to Dynamic Volatility Matrix Estimation by Fourier Transform Method. Master thesis.
Lin and Han(2018).Asymptotically Optimal Importance Sampling for Lower Tail Probability Estimation under Matrix Valued Stochastics. Master thesis.
Engle R. (2002) Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models [J]. Journal of Business & Economic Statistics, 20(3): 339-350.
Han, C. H., Liu, W. H., & Chen, T. Y. (2014). VaR/CVaR estimation under stochastic volatility models. International Journal of Theoretical and Applied Finance, 17(02), 1450009.
Fouque, J. P., & Langsam, J. A. (Eds.). (2013). Handbook on systemic risk. Cambridge University Press.
Billio, M., et al. (2012). "Econometric measures of connectedness and systemic risk in the finance and insurance sectors." Journal of Financial Economics 104(3): 535-559.
Giglio, S., et al. (2016). "Systemic risk and the macroeconomy: An empirical evaluation." Journal of Financial Economics 119(3): 457-471.
Giglio S.(2011)Credit default swap spreads and systemic financial risk[J]. Proceedings, Federal Reserve Bank of Chicago, 2011, 10(9): 104-141.
Girardi, Giulio, and A. Tolga Ergün. (2013) "Systemic risk measurement: Multivariate GARCH estimation of CoVaR." Journal of Banking & Finance 37.8: 3169-3180.
Laeven, L., et al. (2016). "Bank size, capital, and systemic risk: Some international evidence." Journal of Banking & Finance 69: S25-S34.
Koenker, R. W. (2005). Quantile Regression, Cambridge U. Press

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top