跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉子琳
研究生(外文):Tsu Lin Yeh
論文名稱:國際馬拉松競賽成績分析-以新北市萬金石馬拉松為例
論文名稱(外文):Results Analyses for International Marathon Competition – A Case Study of New Taipei City Wan Jin Shi Marathon
指導教授:萬書言萬書言引用關係
指導教授(外文):S. Y. Wan
學位類別:碩士
校院名稱:長庚大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:105
中文關鍵詞:分段計時馬拉松競賽成績分析配速跑者分類資料分析類神經網路運動表現賽會管理賽會服務賽道服務
外文關鍵詞:Split timerMarathon results analysesPacingRunner classificationData analysisArtificial Neural NetworksSport PerformanceSport event managementSport event servicesTrack services
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
[摘要尚未公開]
[摘要尚未公開]
Recommendation Letter from the Thesis Advisor
Thesis/Dissertation Oral Defense Committee Certification
Acknowledgments iii
Chinese Abstract iv
Abstract v
Chapter I Introduction 1
1.1 Research Background 1
1.2 Motivation 3
1.3 Research Question and Research Area 5
Chapter II Literature Review 7
2.1 Marathon Split Timer and Pacing Analysis 7
2.2 Classification for Marathon Performances 12
2.3 Artificial Neural Networks in Sports 13
Chapter III Methodology 15
3.1 Data Analysis Process 16
3.2 Source Information 18
3.3 Analysis of running speed 20
3.4 Artificial Neural Networks 21
Chapter IV Results 22
4.1 Pacing Results 22
4.2 Runner Classification Results 33
4.3 Discussion 54
Chapter V Conclusions and Future Studies 62
5.1 Conclusion 62
5.2 Research Limitations 62
5.3 Research Contributions 63
5.4 Future Studies 63
References 64
Appendix I New Taipei City Wan Jin Shi Marathon Field Studies 70
Appendix II Track Services Questionnaire 73


List of Tables
Table 1. Review of Pacing Analysis References 10
Table 2. Related Taiwan Thesis Studies of ANN in Sport 13
Table 3. Raw Data Attributes 18
Table 4. 2014-2016WJS Marathon Finishers 23
Table 5. 2014 WJS Marathon Pacing Segments 24
Table 6. 2015 WJS Marathon Pacing Segments 27
Table 7. 2016 WJS Marathon Pacing Segments 30
Table 8. Artificial Neural Networks Result of 2014-2016 WJS Marathon Pacing Classification 34
Table 9. General Information of WJS Track Services Survey 55
Table 10. Result of WJS Track Services Survey – Refreshment Station 56
Table 11. Result of WJS Track Services Survey – Sponging Station 57
Table 12. Result of WJS Track Services Survey – Medical Station 58
Table 13. Result of WJS Track Services Survey – Toilet 59
Table 14. Result of Track Services Survey – Course Direction 60
Table 15. Result of Track Services Survey – Cheerleaders 61

List of Figures
Figure 1. Research Framework 15
Figure 2. Research Process 16
Figure 3. Data Analyzing Process Flow for This Study 17
Figure 4. Concept of Data Format Transform 20
Figure 5. 2014 WJS Marathon Men Pacing Pattern 25
Figure 6. 2014 WJS Marathon Women Pacing Pattern 26
Figure 7. 2015 WJS Marathon Men Pacing Pattern 28
Figure 8. 2015 WJS Marathon Women Pacing Pattern 29
Figure 9. 2016 WJS Marathon Men Pacing Pattern 31
Figure 10. 2016 WJS Marathon Women Pacing Pattern 32
Figure 11. 2014 WJS Men Marathon Finishers Training and Validation/Testing (80% & 20%) Error Histogram with 20 bins 36
Figure 12. 2014 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (80% & 20%) 36
Figure 13. 2014 WJS Women Marathon Finishers Training and Validation/Testing (80% & 20%) Error Histogram with 20 bins 37
Figure 14. 2014 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (80% & 20%) 37
Figure 15. 2014 WJS Men Marathon Finishers Training and Validation/Testing (70% & 30%) Error Histogram with 20 bins 38
Figure 16. 2014 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (70% & 30%) 38
Figure 17. 2014 WJS Women Marathon Finishers Training and Validation/Testing (70% & 30%) Error Histogram with 20 bins 39
Figure 18. 2014 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (70% & 30%) 39
Figure 19. 2014 WJS Men Marathon Finishers Training and Validation/Testing (60% & 40%) Error Histogram with 20 bins 40
Figure 20. 2014 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (60% & 40%) 40
Figure 21. 2014 WJS Women Marathon Finishers Training and Validation/Testing (60% & 40%) Error Histogram with 20 bins 41
Figure 22. 2014 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (60% & 40%) 41
Figure 23. 2015 WJS Men Marathon Finishers Training and Validation/Testing (80% & 20%) Error Histogram with 20 bins 42
Figure 24. 2015 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (80% & 20%) 42
Figure 25. 2015 WJS Women Marathon Finishers Training and Validation/Testing (80% & 20%) Error Histogram with 20 bins 43
Figure 26. 2015 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (80% & 20%) 43
Figure 27. 2015 WJS Men Marathon Finishers Training and Validation/Testing (70% & 30%) Error Histogram with 20 bins 44
Figure 28. 2015 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (70% & 30%) 44
Figure 29. 2015 WJS Women Marathon Finishers Training and Validation/Testing (70% & 30%) Error Histogram with 20 bins 45
Figure 30. 2015 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (70% & 30%) 45
Figure 31. 2015 WJS Men Marathon Finishers Training and Validation/Testing (60% & 40%) Error Histogram with 20 bins 46
Figure 32. 2015 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (60% & 40%) 46
Figure 33. 2015 WJS Women Marathon Finishers Training and Validation/Testing (60% & 40%) Error Histogram with 20 bins 47
Figure 34. 2015 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (60% & 40%) 47
Figure 35. 2016 WJS Men Marathon Finishers Training and Validation/Testing (80% & 20%) Error Histogram with 20 bins 48
Figure 36. 2016 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (80% & 20%) 48
Figure 37. 2016 WJS Women Marathon Finishers Training and Validation/Testing (80% & 20%) Error Histogram with 20 bins 49
Figure 38. 2016 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (80% & 20%) 49
Figure 39. 2016 WJS Men Marathon Finishers Training and Validation/Testing (70% & 30%) Error Histogram with 20 bins 50
Figure 40. 2016 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (70% & 30%) 50
Figure 41. 2016 WJS Women Marathon Finishers Training and Validation/Testing (70% & 30%) Error Histogram with 20 bins 51
Figure 42. 2016 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (70% & 30%) 51
Figure 43. 2016 WJS Men Marathon Finishers Training and Validation/Testing (60% & 40%) Error Histogram with 20 bins 52
Figure 44. 2016 WJS Men Marathon Finishers Artificial Neural Networks Training Regression Plot (60% & 40%) 52
Figure 45. 2016 WJS Women Marathon Finishers Training and Validation/Testing (60% & 40%) Error Histogram with 20 bins 53
Figure 46. 2016 WJS Women Marathon Finishers Artificial Neural Networks Training Regression Plot (60% & 40%) 53
Figure 47. WJS Marathon Elevation Profile 54
Figure 48. 2016 WJS Track Service of Refreshment Station 56
Figure 49. 2016 WJS Track Service of Sponge Station 57
Figure 50. 2016 WJS Track Service of Medical Station 58
Figure 51. 2016 WJS Track Service of Toilet 59
Figure 52. 2016 WJS Track Service of Course Direction 60
Figure 53. 2016 WJS Track Service of Cheerleaders 61


2015 Boston Marathon Statistics. (2015). Retrieved December 2, 2015, from http://raceday.baa.org/statistics.html
Angus, S. D. (2014). Did recent world record marathon runners employ optimal pacing strategies? Journal of sports sciences, 32(1), 31-45.
Aschwanden, C., & Falcone, N. (2011). Pace Yourself. Runner's World, 46(4), 86-90.
Chang-Tzong Liu. (2002). Critical Velocity as a Predictor of Marathon Performance. National College of Physical Education and Sports.
Chang, H.-M., & Ciou, Z.-J. (2011). A Study of Influences Factors on Sport Tourism Participation Behavioral in Sport Event Tourist-Case Study of Marathon Road Running in Kinmen National Park. [A Study of Influences Factors on Sport Tourism Participation Behavioral in Sport Event Tourist-Case Study of Marathon Road Running in Kinmen National Park]. Journal of Leisure and Recreation Industry Management, 4(2), 57-76. doi: 10.6213/jlrim.2011.4(2)4
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS quarterly, 36(4), 1165-1188.
Chen, J.-P. (2014). Explore the Charisma of Sports Stars. [Explore the Charisma of Sports Stars]. Leisure & Society Research(10), 43-71.
Cheng-Hong Jiang. (2008). Race time prediction for Taiwan marathoner. National Sun Yat-sen University.
Chi-Wen Chen. (2011). Developing winner prediction models of professional baseball using data mining techniques. National Taiwan Sport University.
Chueh, W.-C., & Lin, H.-C. (2003). Preliminary Study on The Value of Sports Stars. The University Physical Education & Sports(65), 103-108.
Delen, D., Cogdell, D., & Kasap, N. (2012). A comparative analysis of data mining methods in predicting NCAA bowl outcomes. International Journal of Forecasting, 28(2), 543-552.
Ding-Jie Yao. (2015). Race time prediction of Lap Race for Taiwan marathoners. National Yunlin University of Science and Technology.
Esteve-Lanao, J., Larumbe-Zabala, E., Dabab, A., Alcocer-Gamboa, A., & Ahumada, F. (2014). Running World Cross-Country Championships: A Unique Model for Pacing. International Journal of Sports Physiology and Performance, 9(6), 1000-1005.
Fan, W., & Bifet, A. (2013). Mining big data: current status, and forecast to the future. ACM sIGKDD Explorations Newsletter, 14(2), 1-5.
Fang, S. n.-Y., Lin, Y.-E., & Kao, J.-S. (2005). Case Study of Marketing Strategies of. ING International Marathon 2004. Taiwwan Society for Sport Management(9), 60-71.
Gaogang, Y. (2001). Marathon. Taipei Lian Guang.
Gosztyla, A. E., Edwards, D. G., Quinn, T. J., & Kenefick, R. W. (2006). The impact of different pacing strategies on five-kilometer running time trial performance. The Journal of Strength & Conditioning Research, 20(4), 882-886.
Haghighat, M., Rastegari, H., & Nourafza, N. (2013). A review of data mining techniques for result prediction in sports. Advances in Computer Science: an International Journal, 2(5), 7-12.
Hammerling, D., Cefalu, M., Cisewski, J., Dominici, F., Parmigiani, G., Paulson, C., & Smith, R. L. (2014). Completing the Results of the 2013 Boston Marathon. PLoS ONE, 9(4), e93800.
Hanley, B. (2015). Pacing profiles and pack running at the IAAF World Half Marathon Championships. Journal of sports sciences, 33(11).
Hausswirth, C., & Brisswalter, J. (2008). Strategies for improving performance in long duration events. Sports Medicine, 38(11), 881-891.
Helou, N. E., Tafflet, M., Berthelot, G., Tolaini, J., Marc, A., Guillaume, M., . . . Toussaint, J.-F. o. (2012). Impact of Environmental Parameters on Marathon Running Performance. PLoS ONE, 7(5).
Ho, C.-P. (2009). Marathon Sub-Model Analysis With Fast Time~To The 2008 Beijing Olympic Games Men's and Women Marathon Runners as An Example. (Master), National Taiwan University of Sport, Taichung.
Hoos, O., Boeselt, T., Steiner, M., Hottenrott, K., & Beneke, R. (2014). Long-range correlations and complex regulation of pacing in long-distance road racing. International Journal of Sports Physiology and Performance, 9(3), 544-553.
Hsu, G.-S. (2000). Marathon. (Master), National College of Physical Education and Sports.
Hsu, Y.-F. (2005). Analysis Marathon of Split Time of the 2004 Athens Olympic Games. (Master), National Taiwan Sport University.
IAAF Road Running Manual 2014).
Ke-Hsin Lin. (2015). Development of a 3000 Meter Run Physical Performance Prediction Model for male through wearable technology. National Defense Medical College.
Knechtle, B., Barandun, U., Knechtle, P., Zingg, M. A., Rosemann, T., & Rüst, C. A. (2014). Prediction of half-marathon race time in recreational female and male runners. Springerplus, 3, 248.
La Torre, A., Vernillo, G., Agnello, L., Berardelli, C., & Rampinini, E. (2011). Is it time to consider a new performance classification for high-level male marathon runners? The Journal of Strength & Conditioning Research, 25(12), 3242-3247.
Liao, S.-H., Chu, P.-H., & Hsiao, P.-Y. (2012). Data mining techniques and applications–A decade review from 2000 to 2011. Expert Systems with Applications, 39(12), 11303-11311.
March, D. S., Vanderburgh, P. M., Titlebaum, P. J., & Hoops, M. L. (2011). Age, sex, and finish time as determinants of pacing in the marathon. The Journal of Strength & Conditioning Research, 25(2), 386-391.
Maw-Song Su. (2007). The Analysis and Prediction of Pitching Strategy Model of Japanese Pitcher in 2006 World Baseball Classic. National Chiayi University.
Ofoghi, B., Zeleznikow, J., MacMahon, C., & Raab, M. (2013). Data Mining in Elite Sports: A Review and a Framework. Measurement in Physical Education and Exercise Science, 17(3), 171-186.
Peng-Hui Lee. (2013). Game Forecast for the Professional Basketball League Using Neural Network. Tungnan University.
Race Events in Taiwan. (2015). Retrieved June 11, 2015, from http://www.taipeimarathon.org.tw/contest.aspx?lang=en-US
Renfree, A., & Gibson, A. S. C. (2013). Influence of Different Performance Levels on Pacing Strategy During the Women’s World Championship Marathon Race. International Journal of Sports Physiology and Performance.
Renfree, A., & St Clair Gibson, A. (2013). Influence of Different Performance Levels on Pacing Strategy During the Female World Championship Marathon Race. International Journal of Sports Physiology and Performance, 8(3), 279-285.
Ruei-Shiang Fong. (2013). Studies on Predicting the Outcome of Professional Baseball Games with Data Mining Techniques: MLB as a Case. Chinese Culture University.
Rui-Tai Zhang. (1987). The infuence of running economy and anaerobic threshold on marathon performance. National Taiwan Normal University.
Schumaker, R., Solieman, O., & Chen, H. (2010). Sports Data Mining Methodology Sports Data Mining (Vol. 26, pp. 15-21): Springer US.
Teh-Fu Hsu. (2009). Urine Output and Performance of Runners in a 12-Hour Ultra-Marathon. National Yang-Ming University.
Thiel, C., Foster, C., Banzer, W., & De Koning, J. (2012). Pacing in Olympic track races: competitive tactics versus best performance strategy. Journal of sports sciences, 30(11), 1107-1115.
Wei-De Jiang. (2012). A One-to-One Game Forecast for The Professional Baseball League Using Neural Network ---A Case Study on Los Angeles Dodgers and San Francisco Giants. Tungnan University.
Wei-Wan Hsu. (2015). An Analysis of Pace And Split Time Achievement of Five Continents in Olympics Men’S Marathon. National Taiwan University of Sport.
Wen-Zen Han. (2015). MLB Game Predictions by using Logistic Regression and Artificial Neural Networks. National Yunlin University of Science and Technology.
Yang, D. W. (2013). The Study of Predicting Winning Model for CPBL Teams. Hsuan Chuang University.
Yu-Min Ho. (2003). A preliminary model of the computer-based instructional system for the golf swing. I-Shou University.
Zhang, J.-B. (2010). The world's elite marathon runners speed variation characteristics of the Beijing Olympic Games. Journal of Physical Education Institute of Shanxi Teachers University, 25(4), 96-98.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊