|
中文部分 左宏昌、歐崇明。(民105)。公共自行車租賃站狀態應用馬可夫鏈模型之大數據預測。第十五屆離島資訊技術與應用研討會,高雄。 賴淑芳。(民103)。公共自行車租賃系統之城市行銷與產品定位-以臺北微笑單車為例。都市交通,20-31。 鄭淑麗。(民107)。臺北市公共自行車使用特性。107年統計精進與推展研討會,臺北市。 鍾智林、李舒媛。(民107)。以悠遊卡大數據初探 YouBike 租賃及轉乘捷運行為。都市交通,6-36。 陳宥伃、林承萓、廖邕(民105)。公共自行車使用行為之研究動向。休閒與社會研究,201–210。 黃晏珊、鍾智林 民104)。公共自行車系統營運特性大數據分析-以台北YouBike為例。基於美好生活的交通綜合治理。第二十三屆海峽兩岸都市交通學術研討會,新北市。
英文部分 Alexander, R., & Rixey, R. A. (2013). Station-Level Forecasting of Bike Sharing Ridership: Station Network Effects in Three U.S. Systems. Transportation Research Record: Journal of the Transportation Research Board, (2387), 46–55. Caulfield, B., O'Mahony, M., Brazil, W., & Weldon, P. (2017). Examining usage patterns of a bike-sharing scheme in a medium sized city. Transportation research part A: policy and practice, 100, 152-161. Chen, L., Zhang, D., Wang, L., Yang, D., Ma, X., Li, S., Wu, Z., et al. (2016). Dynamic Cluster-Based Over-Demand Prediction in Bike Sharing Systems. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 841–852). El-Assi, W., Mahmoud, M. S., & Habib, K. N. (2017). Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto. Transportation, 44(3), 589-613. Faghih-Imani, A., & Eluru, N. (2016). Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system. Journal of Transport Geography, 54, 218-227. Gebhart, K., & Noland, R. B. (2014). The impact of weather conditions on bikeshare trips in Washington, DC. Transportation, 41(6), 1205–1225. Giot, R., & Cherrier, R. (2014). Predicting Bikeshare System Usage Up to One Day Ahead. IEEE Symposium Series in Computational Intelligence 2014 (SSCI 2014), 2–9. Kou, Z., & Cai, H. (2019). Understanding bike sharing travel patterns: An analysis of trip data from eight cities. Physica A: Statistical Mechanics and its Applications, 515, 785-797. Lin, L., He, Z., & Peeta, S. (2018). Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transportation Research Part C: Emerging Technologies, 97, 258-276. Mattson, J., & Godavarthy, R. (2017). Bike share in Fargo, North Dakota: Keys to success and factors affecting ridership. Sustainable Cities and Society, 34(March), 174–182. Singhvi, D., Singhvi, S., Frazier, P. I., Henderson, S. G., O'Mahony, E., Shmoys, D. B., & Woodard, D. B. (2015, January). Predicting Bike Usage for New York City's Bike Sharing System. In AAAI Workshop: Computational Sustainability. Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2018). Introduction to Data Mining (2nd ed.). Pearson. Westland, J. C., Mou, J., & Yin, D. (2018). Demand cycles and market segmentation in bicycle sharing. Information Processing and Management, (June), 1–13. Elsevier. Retrieved from https://doi.org/10.1016/j.ipm.2018.09.006 Xu, C., Ji, J., & Liu, P. (2018). The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets. Transportation Research Part C: Emerging Technologies, 95, 47–60. Retrieved November 23, 2018, from https://www.sciencedirect.com/science/article/pii/S0968090X18306764 Zhang, Y., Thomas, T., Brussel, M., & van Maarseveen, M. (2017). Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China. Journal of Transport Geography, 58, 59–70. Retrieved November 23, 2018, from https://www.sciencedirect.com/science/article/pii/S0966692316300412
|