跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂知餘
研究生(外文):Chih-Yu Lu
論文名稱:建立過表現刺角瓜Cm8與Cm9基因番茄轉殖株與菸草轉殖株功能性分析
論文名稱(外文):Generation of Cucumis metuliferus Cm8 and Cm9 genes in tomato transgenic plants and functional analysis of tobacco transgenic plants
指導教授:古新梅
口試委員:許奕婷許惇偉
口試日期:2018-06-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:87
中文關鍵詞:刺角瓜木瓜輪點病毒熱休克蛋白40DEAD-box RNA 解旋酶抗病性非生物逆境
外文關鍵詞:Cucumis metuliferusPapaya ring spot virusHsp40DEAD-box RNA helicaseresistanceabiotic stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前人自具木瓜輪點病毒 (Papaya ringspot virus, PRSV) 抗性之刺角瓜 (Cucumis metuliferus) PI292190品系選殖出可能與抗病相關之 Cm8與Cm9基因,其所編碼之蛋白分別為Heat shock protein 40 (Hsp40)與DEAD-box RNA解旋酶蛋白。利用前人構築之Cm8過表現載體與Cm9基因體全長載體分別以農桿菌 (Agrobacterium tumefaciens) 轉殖至番茄 (Solanum lycopersicum) 耐熱品種CLN1558A 中,得1株Cm8OE T0品系與24株Cm9FL T0品系,並藉南方墨點 (Southern blot) 測得帶有單套之SlCm9FL-4、SlCm9FL-5、SlCm9FL-6、SlCm9FL-8、SlCm9FL-9、SlCm9FL-21與其餘雙套以上Cm9番茄T0轉殖品系並留種供後續研究者試驗之。為進一步確認Cm8基因是否具有提供植物之抗病性,利用初步篩選疑為具抗性轉殖株Cm8OE24-2、Cm8OE29-5及Cm8OE73-9之圓葉菸草 (Nicotiana benthamiana) T3同質系與野生型菸草 (wild-type, WT) 分別接種辣椒葉脈斑駁病毒 (Chilli veinal mottle virus, ChiVMV) 、蕪菁嵌紋病毒 (Turnip mosaic virus, TuMV) 、番椒葉脈斑駁病毒 (Pepper veinal mottle virus, PVMV) 及馬鈴薯Y病毒 (Potato virus Y,PVY) ,結果顯示所有轉殖株與非轉殖株皆產生相同感性病徵,表示Cm8基因無法提供轉殖株病毒抗性之能力。非生物逆境方面,為再次檢測Cm8與Cm9基因是否具有非生物逆境耐性之功能,以Cm8OE-24-2-7、Cm8OE-24-2-11、Cm8OE-29-5-22、Cm8OE-73-9-23、Cm9-39FL-8-3及Cm9-39FL-29-10品系之上位葉片,以乾旱、鹽分、重金屬及高溫逆境處理,結果顯示Cm8基因於非生物逆境下可能具有緩解葉綠素降解、維持蛋白質含量及降低氧化逆境傷害之能力。
Previous studies was performed to clone Cm8 and Cm9 gene from horned melon (C. metuliferus) Papaya ringspot virus (PRSV) resistant line PI292190. Cm8 and Cm9 gene encodes Heat shock protein 40 (Hsp40) and DEAD-box RNA helicase. In this study, pGA482G-Cm8OE and pGA482G-Cm9FL vector transformed into tomato (Solanum lycopersicum cv. CLN1558A) by Agrobacterium tumefaciens-mediated transformation. One Cm8OE T0 line and 24 Cm9FL T0 lines were shown containing transgene by polymerase chain reaction. The copy number of transgenic lines including SlCm9FL-4 (one copy of Cm9), SlCm9FL-5 (one copy of Cm9), SlCm9FL-6 (one copy of Cm9), SlCm9FL-8 (one copy of Cm9), SlCm9FL-9 (one copy of Cm9), SlCm9FL-21 (one copy of Cm9) and others with more than two Cm9 copies of tomato independent transgenic T0 lines were confirmed by southern blot analysis. To further investigate Cm8 gene function under biotic stress, the Cm8OE-24-2, Cm8OE29-5 and Cm8OE-73-9 homogeneous tobacco (Nicotiana benthamiana) transgenic T3 lines were inoculated with potyviruses. All of the Cm8OE transgenic lines showed susceptible symptom after inoculated with Chilli veinal mottle virus (ChiVMV), Turnip mosaic virus (TuMV), Pepper veinal mottle virus (PVMV) and Potato virus Y (PVY). The result suggested that Cm8 gene could not provide the virus resistance in the transgenic plants. In order to understand Cm8 and Cm9 gene function under abiotic stress, four Cm8OE homogenous tobacco transgenic T3 lines and two Cm9 homogenous tobacco transgenic T3 lines were treated with drought, salt, heavy metal and heat stress. The results showed that Cm8 gene can reduce possibly chlorophyll degradation, maintain protein content and reduce oxidative stress injury under abiotic stress.
中文摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
壹、前人研究 1
ㄧ、植物抗病機制 1
二、植物對非生物逆境之反應 3
三、Hsp40蛋白介紹 6
四、Hsp40與植物生物、非生物逆境反應之研究 7
五、DEAD-box RNA helicase蛋白介紹 8
六、DEAD-box RNA helicase與非生物逆境反應之研究 9
七、Cm8與Cm9基因選殖 10
貳、材料與方法 14
ㄧ、試驗材料 14
二、農桿菌培養 14
三、番茄基因轉殖 14
四、植物DNA萃取 15
五、聚合酶連鎖反應 16
六、膠體電泳分析 16
七、探針製備 16
八、南方墨點法分析 17
九、圓葉菸草病毒接種與性狀分析 17
十、酵素連結免疫吸附分析法 18
十一、葉片非生物逆境處理 19
十二、植株性狀調查 19
(ㄧ) 鮮重 19
(二) 葉綠素測定 20
(三) 總蛋白含量測定 20
(四) 過氧化氫含量測定 20
(五) 丙二醛含量測定 21
十三、統計分析 21
參、結果 22
ㄧ、番茄Cm8表現系建立與轉殖株檢測 22
二、Cm8OE菸草同質體T3轉殖株抗感病分析 22
三、Cm8過表現菸草轉殖株非生物逆境耐受性檢測 24
(ㄧ)、葉片乾旱逆境耐受性試驗 25
1. 葉綠素含量 25
2. 總蛋白含量 25
3. 過氧化氫含量 26
4. 丙二醛含量 26
(二)、葉片鹽分逆境耐受性試驗 27
1. 葉綠素含量 27
2. 總蛋白含量 27
3. 過氧化氫含量 28
4. 丙二醛含量 28
(三)、葉片重金屬逆境耐受性試驗 28
1. 葉綠素含量 29
2. 總蛋白含量 29
3. 過氧化氫含量 29
4. 丙二醛含量 30
(四)、葉片高溫逆境耐受性試驗 30
1. 葉綠素含量 30
2. 總蛋白含量 31
3. 過氧化氫含量 31
4. 丙二醛含量 31
四、番茄Cm9表現系建立與轉殖株檢測 32
五、Cm9全長菸草轉殖株非生物逆境耐受性檢測 33
(ㄧ)、葉片鹽分逆境耐受性試驗 33
1. 葉綠素含量 33
2. 總蛋白含量 34
3. 過氧化氫含量 34
4. 丙二醛含量 34
(二)、葉片重金屬逆境耐受性試驗 35
1. 葉綠素含量 35
2. 總蛋白含量 36
3. 過氧化氫含量 36
4. 丙二醛含量 36
肆、討論 37
ㄧ、番茄農桿菌轉殖效率分析 37
二、Cm8基因於菸草轉殖株中與病毒抗性影響 38
三、Cm8基因參與非生物逆境反應 39
四、Cm9基因參與非生物逆境反應 40
伍、參考文獻 42
柳建安。2004。植物基因轉殖與分子檢測技術。教育部顧問室植物生物技術教學資源中心。台中。
林育宗。2013。刺角瓜抗木瓜輪點病基因之選殖與功能分析。國立中興大學農藝學系博士論文。台中。
王彥筑。2015。刺角瓜Cm4基因之選殖與其菸草轉殖株之建立與分析。國立中興大學農藝學系碩士論文。台中。
陳思勻。2015。刺角瓜抗木瓜輪點病毒候選基因Cm8及Cm23選殖與分析。國立中興大學農藝學系碩士論文。台中。
余哲賢。2016。刺角瓜Cm4與Cm9基因菸草轉殖株之建立與功能性分析。國立中興大學農藝學系碩士論文。台中。
黃大維。2016。刺角瓜Cm8基因全長選殖與過表現刺角瓜Cm8 cDNA之菸草轉殖功能性分析。國立中興大學農藝學系碩士論文。台中。
Alaraidh, I.A., A.A. Alsahli, and E.S. Abdel Razik. 2018. Alteration of antioxidant gene expression in response to heavy metal stress in Trigonella foenum-graecum L. S. Afr. J. Bot. 115: 90-93.
Ali, A., S. Goswami, R.R. Kumar, K. Singh, J.P. Singh, A. Kumar, A. Kumari, A. Sakhrey, G.K. Rai, and S. Praveen. 2018. Wheat oxygen evolving enhancer protein: identification and characterization of Mn-binding metalloprotein of photosynthetic pathway involved in regulating photosytem II integrity and network of antioxidant enzymes under heat stress. Int. J. Curr. Microbiol. App. Sci. 7: 177-192.
Ajit Tamadaddi, C. and C. Sahi. 2016. J domain independent functions of J proteins. Cell Stress Chaperones. 21: 563-570.
Asensi-Fabado, M.A., A. Amtmann, and G. Perrella. 2017. Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochim. Biophys. Acta 1860: 106-122.
Asano, T., N. Hayashi, M. Kobayashi, N. Aoki, A. Miyao, I. Mitsuhara, H. Ichikawa, S. Komatsu, H. Hirochika, S. Kikuchi, and R. Ohsugi. 2012. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J. 69: 26–36.
Astier, S., J. Albouy, Y. Maury, C. Robaglia, and H. Lecoq. 2007. Principles of plant virology; genome, pathogenicity, virus ecology. Science Publishers, ISBN: 1578083168, New Hampshire, USA.
Azizi, P., M.Y. Rafii, S.N.A. Abdullah, N. Nejat, M. Maziah, M.M. Hanafi, M.A. Latif, and M. Sahebi. 2016. Toward understanding of rice innate immunity against Magnaporthe oryzae. Critic. Rev. Biotechnol. 36: 165-174.
Baek, W., C.W. Lim, and S.C. Lee. 2018. A DEAD‐box RNA helicase, RH8, is critical for regulation of ABA signaling and the drought stress response via inhibition of PP2CA activity. Plant Cell Environ. doi: 10.1111/pce.13200.
Bamishaiye, E.I., N. Balakrishnan, V. Udayasuriyan, S. Varanavasiappan, and D. Sudhakar. 2017. A rapid Agrobacterium-mediated transformation protocol for tomato (Solanum lycopersicum L.) cv. PKM-1. Int. J. Chem. 5: 1024-1030.
Barg, R., M. Pilowsky, S. Shabtai, N. Carmi, A.D. Szetchman, B. Dedicova, and Y. Salts. 1997. The TYLCV-tolerant tomato line MP-1 is characterized by superior transformation competence. J. Exp. Bot. 48: 1919-1923.
Bernatzky, R. and S.D. Tanksley. 1986. Methods for detection of single or low copy sequences in tomato on southern blots. Plant Mol. Biol. Rep. 4: 37-41.
Bestwick, C.S., M.H. Bennett, and J.W. Mansfield. 1995. Hrp mutant of Pseudomonas syringae pv phaseolicola induces cell wall alterations but not membrane damage leading to the hypersensitive reaction in lettuce. Plant Physiol. 108: 503-516.
Bendahmane, A., G. Farnham, P. Moffett, and D.C. Baulcombe. 2002. Constitutive gain‐of‐function mutants in a nucleotide binding site–leucine rich repeat protein encoded at the Rx locus of potato. Plant J. 32: 195-204.
Bent, A.F. and D. Mackey. 2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45: 399-436.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Bücker-Neto, L., A.L.S. Paiva, R.D. Machado, R.A. Arenhart, and M. Margis-Pinheiro. 2017. Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 40: 373-386.
Campbell, W.H. and G. Gowri. 1990. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol. 92: 1-11.
Cao, M., C. Wei, L. Zhao, J. Wang, Q. Jia, X. Wang, Q. Jin, and T. Deng. 2014. DnaJA1/Hsp40 is co-opted by Influenza A virus to enhance its viral RNA polymerase activity. J. Virol. 88: 14078-14089.
Carolina, C. and A. C. M. Francisco. 2004. Tomato transformation and transgenic plant production. Plant Cell Tissue and Org. Cul. 76: 269-275.
Caruthers, J.M. and D.B. McKay. 2002. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12: 123-133.
Caverzan, A., G. PassaiaI, S.B. Rosa, C.W. Ribeiro, F. Lazzarotto, and M. Margis-Pinheiro. 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35: 1011-1019.
Chow, K.-C. and W.L. Tung. 1998. Overexpression of dnaK/dnaJ and groEL confers freeze tolerance to Escherichia coli. Biochem. Biophys. Res. Commun. 253: 502-505.
Chyi, Y.S. and G.C. Phillips. 1987. High efficiency Agrobacterium-mediated transformation of Lycopersicon based on conditions favorable for regeneration. Plant Cell Rep. 6: 105-108.
Cordin, O., J. Banroques, N.K. Tanner, and P. Linder. 2006. The DEAD-box protein family of RNA helicases. Gene 367: 17-37.
Cruz-Mendívil, A., J. Rivera-López, L.J. Germán-Báez, M. López-Meyer, S. Hernández-Verdugo, J.A. López-Valenzuela, C. Reyes-Moreno, and A. Valdez-Ortiz. 2011. A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. micro-tom from leaf explants. HortScience 46: 1655-1660.
Cui, W., L. Li, Z. Gao, H. Wu, Y. Xie, and W. Shen. 2012. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. J. Exp. Bot. 63: 5521-5534.
Davenport, R.J., A. Muñoz-Mayor, D. Jha, P.A. Essah, A. Rus, and M. Tester. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 30: 497-507.
de la Cruz, J., D. Kressler, and P. Linder. 1999. Unwinding RNA in Saccharomyces cerevisiae: DEAD box proteins and related families. Trends Biochem. Sci. 24: 192-198.
Desai, P.N., N. Shrivastava, and H. Padh. 2010.Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol. Adv. 28: 427-435.
Dong, J., F.B. Wu, and G.P. Zhang. 2006. In fluence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64: 1659-1666.
Du, Y., J. Zhao, T. Chen, Q. Liu, H. Zhang, Y. Wang, Y. Hong, F. Xiao, L. Zhang, Q. Shen, and Y. Liu. 2013. Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity. PLoS Pathog. 9:e1003659.
Ellu, P., B. S. Garcia, B. Pineda, G. Rios, L. A. Roig, and V. Moreno. 2003. The ploidy level of transgenic plants in Agrobacterium -mediated transformation of tomato cotyledons (Lycopersicon esculentum) is genotype and procedure dependent. Theo. App. Genet. 106: 231-238.
Farid, M., S. Ali, M. Rizwan, Q. Ali, F. Abbas, S.A.H. Bukhari, R. Saeed, and L. Wu. 2017. Citricacid assisted phytoextraction of chromiumbysun flower; morpho-physiological and biochemical alterations in plants. Ecotoxicol. Environ. Saf. 145: 90-102.
Fragkostefanakis, S., S. Simm, P. Paul, D. Bublak, K.-D. Scharf, and E. Schleiff. 2015. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ. 38:693-709.
Frary, A. and E.D. Earle. 1996. An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep. 16: 235-240.
Fulton, T.M., J. Chunwongse, and S.D. Tanksley. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-207.
Fusco, N., L. Micheletto, G. Dal Corso, L. Borgato, and A. Furini. 2005. Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J. Exp. Bot. 56: 3017-3027.
Gao, N., W. Shen, Y. Cao, Y. Su, and W. Shi. 2009. Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell Tiss. Organ Cult., 98: 321-330.
Gorbalenya, A.E. and E.V. Koonin.1993. Helicases: amino acid sequence comparisons and structure–function relationships. Curr. Opin. Struct. Biol. 3: 419-429.
Grosjean, H. and W. Fiers. 1982. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18: 199-209.
Guan, Q., X. Yue, H. Zeng, and J. Zhu. 2014. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress–responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell 26: 438-453
Hamza, S. and Y. Chupeau. 1993. Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation form tomato (Lycopersicon esculentum). J. Expt. Bot. 44: 1837-1845.
Hasegawa, P.M., R.A. Bressan, J.K. Zhu, and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Phys. 51: 463-499.
Heath, R.L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. Arch. Biochem. Biophys. 125: 189-198.
Hoekstra, F.A., E.A. Golovina, and J. Buitink. 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6: 431–438.
Hossain, M.A., P. Piyatida, J.A.T. da Silva, and M. Fujita. 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methyl glyoxal and in heavy metal chelation. J. Bot. Article ID 872875. doi:10.1155/2012/872875.
Hussain, M., M.A. Malik, M. Farooq, M.Y. Ashraf, and M.A. Cheema. 2008. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci. 194: 193-199.
Jana, S. and M.A. Choudhuri. 1981. Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat. Bot. 11: 67-77.
Jaouannet, M., M. Magliano, M.J. Arguel, M. Gourgues, E. Evangelisti, P. Abad, and M.N. Rosso. 2013. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Mol. Plant Microbe Interact. 26: 97-105.
Kampinga, H.H. and E.A. Craig. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11: 579-592.
Kant, P., S. Kant, M. Gordon, R. Shaked, and S. Barak. 2007. STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol. 145: 814-830.
Kobayashi, Y., M. Yamada, I. Kobayashi, and H. Kunoh. 1997. Actin microfilaments are required for the expression of nonhost resistance in higher plants. Plant Cell Physiol. 38:725-733.
Lämke, J., K. Brzezinka, S. Altmann, and I. Bäurle. 2016. A hit‐and‐run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J. 35: 162-175.
Larkindale, J. and B. Huang. 2004. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylicacid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol. 161: 405-413.
Linder, P., P.F. Lasko, M. Ashburner, P. Leroy, P.J. Nielsen, K. Nishi, J. Schnier, and P.P. Slonimski. 1989. Birth of the D-E-A-D box. Nature 337: 121-122.
Ling, H.Q., D. Kriseleit, and M.W. Ganal. 1998. Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.) Plant Cell Rep. 17: 843-847.
Machado, R.M.A. and R.P. Serralheiro. 2017. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3: 30.
Macho, A.P. and C. Zipfel. 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54: 263-272.
Macková, H., M. Hronková, J. Dobrá, V. Turečková, O. Novák, Z. Lubovská, V. Motyka, D. Haisel, T. Hájek, I.T. Prášil, A. Gaudinová, H. Štorchová, E. Ge1, T. Werner, T. Schmülling, and R. Vanková. 2013. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64: 2805-2815.
Mahajan, S. and N. Tuteja. 2005.Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444: 139-158.
McCormick, S., J. Niedermeyer, J. Fry, A. Barnason, R. Horsch, and R. Fraley. 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81-84.
Mondal, T., A. Bhattacharya, P. Ahuja, and P. Chand. 2001. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 20: 712-720.
Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239-250.
Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.
Nath, M., S. Yadav, R.K. Sahoo, N. Passricha, R. Tuteja, and N. Tuteja. 2016. PDH45 transgenic rice maintain cell viability through lower accumulation of Na+, ROS and calcium homeostasis in roots under salinity stress. J. Plant Physiol.191: 1-11.
Osbourn, A. 1996. Saponins and plant defence — a soap story. Trends Plant Sci. 1:4-9.
Paramesh, H., B. Fakrudin, and M.S. Kuruvinashetti. 2010. Genetic transformation of a local variety of tomato using gus gene: an efficient genetic transformation protocol for tomato. J. Agric. Technol. 6: 87-97.
Pause, A. and N. Sonenberg. 1992. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11: 2643-2654.
Pawar, B.D., A.S. Jadhav, A.A. Kale, V.P. Chimote, and S.V. Pawar. 2012. Zeatin induced direct in vitro shoot regenation in tomato (Solanum lycopersicum L.). The Bioscan 7: 247-250.
Pawar, B.D., A.S. Jadhav, A.A. Kale, V.P. Chimote, and S.V. Pawar. 2013. Effect of explants, bacterial cell density and overgrowth-control antibiotics on transformation efficiency in tomato (Solanum lycopersicum L.) J. Appl. Hort. 15: 95-99.
Prochazkova, D., R.K. Sairam, G.C. Srivastava, and D.V. Singh. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 161: 765-771.
Provvidenti, R. and R.W. Robinson. 1974. Resistance to Squash mosaic virus and Watermelon mosaic virus 1 in Cucumis metuliferus. Plant Dis. Rep. 58: 735-738.
Provvidenti, R. and D. Gonsalves. 1982. Resistance to Papaya ringspot virus in Cucumis metuliferus and its relationship to resistance to Watermelon mosaic virus 1. J. Hered. 73:239-240.
Rai, G.K., N.P. Rai, S. Kumar, A. Yadav, S. Rathaur, and M. Singh. 2012. Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cell. Dev. Biol. - Plant 48: 565-578.
Robinson, S.M. and R.M. Bostock. 2015. β-Glucans and eicosapolyenoic acids as MAMPs in plant–oomycete interactions: past and present. Front. Plant Sci. 5:797.
Rocak, S. and P. Linder. 2004. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5: 232-241.
Rouphael, Y., G. Raimondi, L. Lucini, P. Carillo, M.C. Kyriacou, G. Colla, V. Cirillo1, A. Pannico1, C. El-Nakhel, and S. De Pascale. 2018. Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. Front. Plant Sci. 9: 249.
Rus, A., B.H. Lee, A. Muñoz-Mayor, A. Sharkhuu, K. Miura, J.K. Zhu, R.A. Bressan, and P.M. Hasegawa. 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiolo. 136: 2500-2511.
Rucker, K.S., C.K. Kvien, C.C. Holbrook, and J.E. Hook. 1995. Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci. 24: 14-18.
Salas-Muñoz, S., A.A. Rodríguez-Hernández, M.A. Ortega-Amaro, F.B. Salazar-Badillo, and J.F. Jiménez-Bremont. 2016. Arabidopsis AtDjA3 null mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and post-germination stages. Front. Plant Sci. 7: 220.
Sairam, R.K., G.C. Srivastava, S. Agarwal, and R.C. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49: 85-91.
Schramm, F., J. Larkindale, E. Kiehlmann, A. Ganguli, G. Englich, E. Vierling, and P.V. Koskull-Döring. 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J.53: 264-274
Schwer, B. and T. Meszaros. 2000. RNA helicase dynamics in pre-mRNA splicing. EMBO J. 19: 6582-6591.
Schützendübel, A. and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53:1351-1365.
Shah, S.-H., S. Ali, S.A. Jan, J.U. Din, G.M. Ali 2014. Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell Tiss. Organ Cult. 120: 1139-1157.
Sharma, M.K., A.U. Solanke, D. Jani, Y. Singh, and A.K. Sharma. 2009. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. J. Biosci. 34: 423-433.
Shi, H., M. Ishitani, C. Kim, and J.K. Zhu. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Plant Mol. Biol. 50:543-550.
Singh, S., M. Rathore, D. Goyary, R.K. Singh, S. Anandhan, D.K. Sharma, and Z. Ahmed. 2011. Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep. 30, 1019-1028.
Singleton, M.R., M.S. Dllingham, and D.B. Wigley. 2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76: 23-50.
Smith, D.W.E. 1996. Problems of translating heterologous genes in expression systems: the role of tRNA. Biotechnol. Prog. 12: 417-422.
So, H.-A., E. Chung, and J.-H. Lee. 2014. Arabidopsis atDjC53 encoding a type III J-protein plays a negative role in heat shock tolerance. Genes Genom. 36: 733-744.
Soltanmohammadi, B., M. Jalali-Javaran, H. Rajabi-Memari, and M. Mohebodini. 2014. Cloning, transformation and expression of proinsulin gene in tomato (Lycopersicum esculentum Mill.). Jundishapur J. Nat. Pharm. Prod. 9: 9-15.
Sreekanta, S., G. Bethke, N. Hatsugai, K. Tsuda, A. Thao, L. Wang, F. Katagiri, and J. Glazebrook. 2015. The receptor-like cytoplasmic kinase PCRK1 contributes to pattern-triggered immunity against Pseudomonas syringae in Arabidopsis thaliana. New Phytol. 207: 78-90.
Stief, A., S. Altmann, K. Hoffmann, B.D. Pant, W.-R. Scheible, and I. Bäurle. 2014. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26: 1792-1807
Sun, S., X.P. Kang, X.J. Xing, X.Y. Xu, J. Cheng, S.W. Zheng, and G.M. Xing.2015. Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. cv. Hezuo 908) with improved efficiency. Biotechnol. Biotec. Equip. 29: 861-868.
Tanner, N.K. 2003. The newly identified Q motif of DEAD box helicases is involved in adenine recognition. Cell Cycle 2: 18-19.
Tomoyasu, T., T. Ogura, T. Tatsuta, and B. Bukau. 1998. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol. 30: 567-581.
Tripathi, S., J.Y. Suzuki, S.A. Ferreira, and D. Gonsalves. 2008. Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol. Plant Pathol. 9: 269-280.
Van Roekel, J.S.C., B. Damm, L.S. Melchers, and A. Hoekema. 1993. Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep. 12: 644-647.
Vashisht, A.A. and N. Tuteja. 2006. Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. J. Photochem. Photobiol. B 84: 150-160.
Wahid, A. and T. Close. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant. 51: 104-109.
Wang, G., G. Cai, F. Kong, Y. Deng, N. Ma, and Q. Meng. 2014. Overexpression of tomato chloroplast-targeted DnaJ protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco. Plant Physiol. Biochem. 82: 95-104.
Wang, G., F. Kong, S. Zhang, X. Meng, Y. Wang, and Q. Meng. 2015. A tomato chloroplast-targeted DnaJ protein protects RubisCO activity under heat stress. J. Exp. Bot. 66: 3027-3040.
Wang, Z., Q. Li, W. Wu, J. Guo, and Y. Yang. 2017. Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. Ecotoxicol. Environ. Saf. 135: 75-81
Weber, C., L. Nover, and M. Fauth. 2008. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J. 56: 517-530.
Wildner, G.F. and J. Henkel. 1979. The effect of divalent metal ions on the activity of Mg2+ depleted ribulose-1,5-bisphosphate oxygenase. Planta 146: 223-228.
Wintermans, J.F.G.M. and A. De Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim. Biophys. Acta, Biophys. Incl. Photosynth. 109: 448-453.
Wroblewski, T., A. Tomczak, and R. Michelmore. 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J. 3: 259-273.
Wu, S., L. Shan, and P. He. 2014. Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci. 228: 118-126.
Xia, Z., X. Zhang, J. Li, X. Su, and J. Liu. 2014. Overexpression of a tobacco J-domain protein enhances drought tolerance in transgenic Arabidopsis. Plant Physiol. Biochem. 83: 100-106.
Yadav, S.K. 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phyto chelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 76: 116-179
Yoshida, T., N. Ohama, J. Nakajima, S. Kidokoro, J. Mizoi, K. Nakashima, K. Maruyama, J.-M. Kim, M. Seki, D. Todaka, Y. Osakabe, Y. Sakuma, F. Schöffl, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2011. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genomics 286: 321-332.
Zhang, X.D., J.Y. Sun, Y.Y. You, J.B. Song, and Z.M. Yang. 2018. Identification of Cd-responsive RNA helicase genes and expression of a putative BnRH 24 mediated by miR158 in canola (Brassica napus). Ecotoxicol. Environ. Saf. 157: 159-168.
Zhao, Q., L. Zhou, J. Liu, X. Du, M.A.U. Asad, F. Huang, G. Pan, and F. Cheng. 2018.Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiol. Biochem. 122: 90-101.
Zhao, T.J., S. Sun, Y. Liu, J.M. Liu, Q. Liu, Y.B. Yan, and H.M. Zhou. 2006. Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J. Biol. Chem. 281: 10752-10759.
Zhong, X., J. Yang, Y. Shi, X. Wang, and G.L. Wang. 2018. The DnaJ protein OsDjA6 negatively regulates rice innate immunity to the blast fungus Magnaporthe oryzae. Mol. Plant Pathol. 19: 607-614.
Zhu, X., S. Liang, J. Yin, C. Yuan, J. Wang, W. Li, M. He, J. Wang, W. Chen, B. Ma, Y. Wang, P. Qin, S. Li, and X. Chen. 2015. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa). Gene 574: 11-19.
Zipfell, C., S. Robatzek, L. Navarro, E.J. Oakeley, J.D. Jones, G. Felix, and T. Boller. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊