跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍立璿
研究生(外文):Li Hsuan Lan
論文名稱:硫化銀量子點微流體合成及其在生物成像之應用
論文名稱(外文):Silver sulfide quantum dot syntheses by microfluidic reaction and its applications in bioimaging
指導教授:盧信冲
指導教授(外文):H. C. Lu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:138
中文關鍵詞:硫化銀量子點親水性生物成像
外文關鍵詞:silver sulfidequantum dotshydroplilic QDsbioimaging
相關次數:
  • 被引用被引用:1
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微流體反應法及低溫大氣一鍋合成法,來合成可取代目前廣泛應用之有毒含鎘的量子點之硫化銀(Ag2S)量子點材料,再藉由調整反應溫度、反應時間及前驅液莫耳數比例合成可調控PL發光波長,且可釋放近紅外光之PL發光的疏水性Ag2S量子點,同時開發相關製程技術。接著,以巯基丙酸修飾量子點表面,將硫化銀量子點改質成親水性;最後,經過表面修飾及生物共軛接著後,將這些含親水性硫化銀量子點的生物探針應用於生物成像上。
  透過PL、XRD、TEM進行分析,證實可合成出成份及結構正確、PL發光從波長650 – 850 nm、粒徑約3-5 nm之Ag2S量子點。以巯基丙酸(MPA)進行表面改質,透過PL、XRD、FTIR進行分析,證實可合成出PL發光波長約為800 nm、成份及結構正確之親水性Ag2S量子點。最後,以EDC/NHS表面改質及與金黃色葡萄球菌表面protein A進行共軛接著,形成可對金黃色葡萄球菌進行生物成像與檢測之生物螢光探針,再透過FTIR及ELISA檢測,並利用共軛焦顯微鏡觀察其對金黃色葡萄球菌之特異結合成像,證實所合成之Ag2S量子點具備作為生物螢光探針被應用在生物成像之可行性。
In this study, we used the micro-fluidic reaction method and low-temperature atmospheric one-pot synthesis method to synthesize silver sulfide (Ag2S) quantum dot (QD) materials. Hydrophobic Ag2S QDs with tunable PL emission peakin near-infrared (NIR) region were synthesized by adjusting the reaction temperature, reaction time, and molar ratio of precursor solution and related processes were also developed. We attempted to use mercaptopropionic acid (MPA) to modify the surface of these hydrophobic Ag2S QDs to make them hydrophilic. Finally, biological fluorescent probes containing hydrophilic Ag2S QDs were fabricated through surface modification and bioconjugation and were applied in bioimaging.
Through PL, XRD and TEM analyses, it is confirmed that hydrophobic Ag2S QDs with correct composition and structure, PL emission peak from 650 to 850 nm, and particle size around 3 to 5 nm were successfully snythesized. It is also confirmed through PL, XRD and FTIR analyses that hydroplilic Ag2S QDs with PL emission peak at 800 nm as well as correct composition and structure were sucessfullly prepared by the surface modification of hydrophobic Ag2S QDs with MPA.
Finally, biological fluorescent probes for bioimagingof Staphylococcus aureus (S. aureus) were fabricated by the surface modification of hydrophilic Ag2S QDs by EDC/NHS and their subsequent bioconjugation with the S. aureus surface protein A and the required functionality of these modification steps were confirmed by FTIR and ELISA. By using confocal microscope to observe the specific binding imagings of S. aureus, we confirmed that the prepared Ag2S quantum dots have the capability to be applied as biological fluorescent probes in bioimaging.
指導教授推薦書
口試委員會審定書
致謝 iii
摘要 iv
英文摘要 v
第一章 緒論 - 1 -
1.1研究背景 - 1 -
1.2 研究動機 - 4 -
第二章 文獻回顧 - 5 -
2.1量子點 - 5 -
2.1.1 量子點介紹 - 5 -
2.1.2量子點的演進 - 9 -
2.1.3量子點合成方法 - 10 -
2.1.4 核殼結構量子點 - 26 -
2.1.5量子點表面改質 - 30 -
2.2 無鎘量子點材料及其特性 - 35 -
2.2.1 CuInS2及CuInS2/ZnS量子點 - 38 -
2.2.2 Ag2S及Ag2Se量子點 - 42 -
2.3量子點之應用 - 46 -
2.4生物感測與顯影成像之應用 - 49 -
第三章 實驗方法及步驟 - 54 -
3.1 實驗藥品及材料 - 54 -
3.2 實驗設備 - 56 -
3.3 實驗步驟 - 57 -
3.3.1 Ag2S前驅液配製 - 58 -
3.3.2 疏水性Ag2S量子點合成及保存 - 58 -
3.3.3 親水性Ag2S量子點合成 - 61 -
3.3.4 Ag2S量子點生物探針之製備 - 62 -
3.3.5 以Ag2S量子點生物探針標定金黃色葡萄球菌 - 62 -
3.4 檢測及分析 - 63 -
3.4.1 疏水性量子點之檢測 - 64 -
3.4.2 親水性量子點之檢測 - 65 -
3.4.3 Ag2S生物探針之檢測 - 66 -
3.4.4 Ag2S生物探針標定金黃色葡萄球菌之檢測 - 67 -
第四章 結果與討論 - 68 -
4.1 Ag2S合成之初步合成探討 - 68 -
4.2 Ag2S量子點微流體合成 - 70 -
4.2.1 不同反應溫度對合成Ag2S量子點特性影響之探討 - 72 -
4.2.2 不同反應時間對合成Ag2S量子點特性影響之探討 - 73 -
4.3 Ag2S量子點低溫大氣一鍋法合成 - 86 -
4.4 微流體法與低溫大氣一鍋法合成之結果比較 - 92 -
4.5 親水性Ag2S量子點製備之探討 - 99 -
4.6 Ag2S量子點生物探針之製備 - 106 -
4.7 以Ag2S量子點生物探針標定金黃色葡萄球菌 - 111 -
第五章 總結 - 113 -
第六章 未來展望 - 114 -
第七章 參考文獻 - 115 -


圖目錄
圖2- 1量子井、量子線及量子點及能量狀態關係示意圖 - 6 -
圖2- 2 CdSe量子點發光波長圖 - 8 -
圖2- 3 Ag2S量子點之XRD圖 - 11 -
圖2- 4 Ag2S量子點之TEM圖 - 11 -
圖2- 5以溶膠-凝膠法合成CdSe量子點之(a)吸收光譜及(b) TEM圖 - 13 -
圖2- 6以共沉澱法合成之ZnS:Cu及ZnS:Cu/ZnS核/殼量子點之(a)紫外光-可見光吸收光譜、(b)ZnS:Cu之TEM圖及(c)ZnS:Cu/ZnS之TEM - 15 -
圖2- 7熱注射法合成量子點之流程 - 17 -
圖2- 8熱注射法合成之CdSe量子點之(a) TEM圖及(b)PL光譜及吸收光譜 - 17 -
圖2- 9 CdS量子點及經陽離子交換而生成的Ag2S量子點之PL圖譜 - 19 -
圖2- 10 CdS量子點及經陽離子交換而生成的Ag2S量子點之TEM及HRTEM圖 - 19 -
圖2- 11以水熱法合成CdTe量子點之(a)紫外光-可見光吸收光譜及(b)TEM圖 - 21 -
圖2- 12 合成CdSe之不鏽鋼微流體反應裝置圖 - 25 -
圖2- 13 微流體反應於不同反應時間合成CdSe之PL光譜 - 25 -
圖2- 14 合成CdSe之超臨界流體反應裝置圖 - 26 -
圖2- 15 核/殼量子點結構及不同能帶排列示意圖 - 27 -
圖2- 16 用於量子點表面改質之配體 - 31 -
圖2- 17 複合型配體DHLA-PEG-(OH)結構示意圖 - 32 -
圖2- 18 CdSeOA量子點(實線)及經吡啶改質後的CdSePy1, CdSePy2, CdSePy3量子點(虛線)之吸收光譜 - 34 -
圖2- 19 (a)CdSeOA量子點、(b)CdSePy1、(c)CdSePy2、(d)CdSePy3量子點之TEM圖 - 34 -
圖2- 20 硒化物及硫化物的能帶相對於真空及正常氫電極(NHE)的能階圖 - 37 -
圖2- 21 典型生物介質的光衰減係數(attenuation coefficient)對波長的變化圖 - 38 -
圖2- 22 CIS的(a)黃銅礦結構(chalcopyrite, CH)及(b)CuAu-ordered(CA)結構 - 39 -
圖2- 23 不同Cu/In比例合成之CuInS2/ZnS 核/殼量子點之(a)UV吸收光譜、(b) PL光譜、(c)照片 - 41 -
圖2- 24 不同Cu/In比例合成之CuInS2/ZnS 核/殼量子點之(a)UV吸收光譜、(b) PL圖譜、(c)照片 - 41 -
圖2- 25 PEG包覆之Ag2S量子點之相關研究數據 - 44 -
圖2- 26 量子點在生物光子學領域應用之示意圖 - 47 -
圖2- 27 量子點在奈米醫學領域應用之示意圖 - 48 -
圖2- 28 使用與AS1411適體共軛之量子點作為探針之人體膠質母細胞瘤U87MG的體外染色。(A)、(C)為有使用適體量子點探針在螢光及明亮區域之細胞顯微影像;(B)、(D)為未使用量子點探針在螢光及明亮區域之細胞顯微影像 - 50 -
圖2- 29 在尾靜脈注射InAs/InP/ZnSe 核/殼/殼量子點-MPA後1小時和4小時,22B荷瘤小鼠和攜帶LS174T荷瘤小鼠(箭頭)的體內NIR螢光成像 - 52 -
圖3- 1 量子點應用於生物成像之實驗流程圖 - 57 -
圖3- 2 微流體反應系統之裝置示意圖 - 59 -
圖3- 3 以一鍋合成法量子點之示意圖 - 60 -
圖3- 4 Ag2S量子點由疏水相(甲苯)轉移至親水相(MPA)之示意圖 - 61 -
圖3- 5 Ag2S量子點由有機轉移至水相之粒子表面官能基轉化示意圖 - 61 -
圖3- 6 疏水性量子點之檢測 - 64 -
圖3- 7 親水性量子點之檢測 - 65 -

圖4- 1 兩種濃度前驅液以溶熱法在130 oC下反應6小時後過濾乾燥所得產物之XRD圖譜 - 70 -
圖4-2 0.015 M前驅液經溶熱法及微流體反應法合成溶液經過過濾乾燥所得產物之XRD圖譜 - 71 -
圖4-3 0.12 M前驅液經微反應器在120 oC下合成溶液之PL圖譜 - 72 -
圖4- 4 以0.12 M前驅溶液在120 oC下進行不同時間之微流體反應所得溶液之PL發光波峰波長變化圖 - 75 -
圖4- 5 以0.12 M前驅溶液在120 oC下進行不同反應物體積流速之微流體反應所得溶液之PL發光圖譜 - 76 -
圖4- 6 以0.12 M前驅溶液在120 oC下進行不同反應物體積流速之微流體反應所得溶液之UV-vis吸收光譜圖 - 76 -
圖4- 7 以0.06 M前驅溶液在120 oC下進行不同時間之微流體反應所得溶液之PL發光測量之PL發光測量之作圖 - 78 -
圖4- 8 以0.06 M前驅溶液在120 oC下進行不同反應物體積流速之微流體反應所得溶液之PL發光圖譜 - 79 -
圖4- 9反應溫度120 oC,反應時間120秒,不同濃度前驅液濃度與合成出Ag2S溶液之PL發光波峰波長之關係圖 - 81 -
圖4- 10 不同濃度前驅溶液之粒徑大小與生長速率關係圖 - 82 -
圖4- 11 以0.12 M前驅液在120 oC下以微流體反應所得溶液加入NaOH溶液後經離心乾燥所得產物之XRD圖譜 - 84 -
圖4- 12 量子點溶液加入水、離心後及重新分散於甲苯中之照片 - 84 -
圖4- 13 Ag2S量子點分散於乙醇及甲苯中所得溶液之PL圖譜 - 85 -
圖4- 14 不同比例液在70 oC恆溫下反應後之溶液照片 - 87 -
圖4- 15 不同比例前驅溶液在70 oC恆溫下反應後所得Ag2S量子點溶液之PL發光圖譜 - 88 -
圖4- 16不同比例前驅溶液在70 oC恆溫下反應五分鐘所得Ag2S量子點溶液經乾燥後所得粉末之XRD圖譜 - 89 -
圖4- 17 不同比例前驅液在25 oC下反應後量子點之PL發光圖譜 - 90 -
圖4- 18 以微流體法及一鍋法在室溫下合成出量子點溶液之PL圖 - 93 -
圖4- 19 在室溫下合成出的量子點溶液經過離心乾燥所得產物之XRD圖譜 - 94 -
圖4- 20 (左)以一鍋法在40 oC下(右)微流體法在80 oC下反應所得量子點溶液之PL圖譜 - 97 -
圖4- 21 (左)以一鍋法在40 oC下(右)微流體法在80 oC下反應所得量子點溶液經離心後所得產物之XRD圖譜 - 97 -
圖4- 22 (左)以一鍋法在40 oC 下(右)微流體法在80 oC下反應所得量子點之TEM - 98 -
圖4- 23 (左)以一鍋法在40 oC 下(右)微流體法在80 oC下反應所得量子點之粒徑分布圖 - 98 -
圖4- 24 量子點溶液由有機相(左圖)轉移至下層水相(右圖) - 101 -
圖4- 25 為疏水性量子點溶液經(左) pH=5(右) pH=10之MPA改質後,取出下層溶液離心後並重新散在PBS中之照片 - 101 -
圖4- 26 經改質後分散在PBS中的Ag2S量子點之PL發光圖譜 - 102 -
圖4- 27 經改質後分散在PBS中的Ag2S量子點之zeta電位 - 102 -
圖4- 28 改質前後Ag2S之PL發光圖譜 - 102 -
圖4- 29 改質前後Ag2S之UV-Vis吸收圖譜 - 103 -
圖4- 30 改質前後Ag2S之XRD圖譜 - 103 -
圖4- 31 Ag2S以MPA改質前後之FTIR圖 - 105 -
圖4- 32 量子點改質前(左)後(右)表面官能基之示意圖 - 105 -
圖4- 33 親水性量子點與EDC/NHS反應連接前後之FTIR圖譜 - 107 -
圖4- 34 親水性量子點與EDC/NHS反應連接前後之結構示意圖 - 107 -
圖4- 35 (a) Protein A二抗with HRP與TMB反應 (b)再加入終止劑、(c)量子點 (d)量子點+Protein A控制組之顏色變化 - 109 -
圖4- 36 以共軛焦顯微鏡觀察Ag2S量子點生物探針標定金黃色葡萄球菌之影像 - 112 -
圖4- 37文獻中以共軛焦顯微鏡觀察Ag2S親水性量子點標記NIH/3T3小老鼠纖維細胞之影像[53] - 112 -

表目錄
表2- 1不同方法合成之各種量子點及其尺寸與光吸收峰值 - 22 -
表2- 2不同方法合成之各種量子點之PL螢光峰、半高寬及量子產率值 - 22 -
表2- 3全世界不同廠商及研究單位量子點材料合成方法及應用現況比較表 - 47 -
表4- 1以0.12 M前驅溶液在120 oC下進行不同時間之微流體反應所得溶液之PL發光測量之結果 - 75 -
表4- 2 以0.06 M前驅溶液在120 oC下進行不同時間之微流體反應所得溶液之PL發光測量之結果 - 78 -
表4- 3反應溫度120 oC,反應時間120秒,以不同前驅液濃度合成的Ag2S溶液之PL發光測量之結果 - 81 -
表4- 4不同比例前驅溶液在70 oC恆溫下反應五分鐘後所得Ag2S量子點溶液之測量結果 - 88 -
表4- 5不同比例前驅溶液在25 oC下反應後所得Ag2S量子點溶液之測量結果 - 91 -
表4- 6文獻中反應溫度90 oC,反應時間3小時,以不同前驅液濃度合成的Ag2S溶液之測量結果 - 91 -
表4- 7以微流體法及一鍋法合成出的量子點溶液之放光波峰位置及其半高寬 - 93 -
表4- 8 以一鍋法及微流體反應法在不同反應條件下合成出之Ag2S量子點溶液之量測分析結果 - 96 -
表4- 9控制組及實驗組經ELISA Reader測量波長450 nm之吸光值 - 110 -
[1] S. Chand, N. Thakur, S. C. Katyal, P. B. Barman, V. Sharma and P. Sharma, "Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots," Solar Energy Materials and Solar Cells 168 (2017) 183-200
[2] Y. Zhang, J. Xia, C. Li, G. Zhou, W. Yang, D. Wang, H. Zheng, Y. Du, X. Li and Q. Li, "Near-infrared-emitting colloidal Ag2S quantum dots excited by an 808 nm diode laser," Journal of Materials Science 52(16) (2017) 9424-9429
[3] F. T. Rabouw and C. de Mello Donega, Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. ed.; Springer: Place Vol. Published, 2017; p 1-30.
[4] J. Chen, V. Hardev and J. Yurek, Quantum-dot displays: Giving LCDs a competitive edge through color. ed.; Place Vol. 29, Published, 2013; p 12-17.
[5] D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, "A novel organometallic synthesis of highly luminescent CdTe nanocrystals," The Journal of Physical Chemistry B 105(12) (2001) 2260-2263
[6] A. Mews, A. Eychmüller, M. Giersig, D. Schooss and H. Weller, "Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide," The Journal of Physical Chemistry 98(3) (1994) 934-941
[7] M. A. Hines and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals," The Journal of Physical Chemistry 100(2) (1996) 468-471
[8] Z. A. Peng and X. Peng, "Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor," Journal of the American Chemical Society 123(1) (2001) 183-184
[9] H.-Y. Yang, Y.-W. Zhao, Z.-Y. Zhang, H.-M. Xiong and S.-N. Yu, "One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window," Nanotechnology 24(5) (2013) 055706
[10] M. R. Gaeeni, M. Tohidian and M. Majles-Ara, "Green synthesis of CdSe colloidal nanocrystals with strong green emission by the sol–gel method," Industrial & Engineering Chemistry Research 53(18) (2014) 7598-7603
[11] Y.-C. Pu and Y.-J. Hsu, "Multicolored Cd 1− x Zn x Se quantum dots with type-I core/shell structure: single-step synthesis and their use as light emitting diodes," Nanoscale 6(7) (2014) 3881-3888
[12] T. Kim, Y. K. Jung and J.-K. Lee, "The formation mechanism of CdSe QDs through the thermolysis of Cd (oleate)2 and TOPSe in the presence of alkylamine," Journal of Materials Chemistry C 2(28) (2014) 5593-5600
[13] R. Gui, J. Sun, D. Liu, Y. Wang and H. Jin, "A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag¬2S quantum dots emitting in the second near-infrared biological window," Dalton Transactions 43(44) (2014) 16690-16697
[14] A. M. Jagtap, J. Khatei and K. K. Rao, "Exciton–phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots," Physical Chemistry Chemical Physics 17(41) (2015) 27579-27587
[15] M. Mirhosseini Moghaddam, M. Baghbanzadeh, A. Sadeghpour, O. Glatter and C. O. Kappe, "Continuous‐Flow Synthesis of CdSe Quantum Dots: A Size‐Tunable and Scalable Approach," Chemistry–A European Journal 19(35) (2013) 11629-11636
[16] M. S. Naughton, V. Kumar, Y. Bonita, K. Deshpande and P. J. Kenis, "High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals," Nanoscale 7(38) (2015) 15895-15903
[17] A. Chakrabarty, S. Marre, R. F. Landis, V. M. Rotello, U. Maitra, A. Del Guerzo and C. Aymonier, "Continuous synthesis of high quality CdSe quantum dots in supercritical fluids," Journal of Materials Chemistry C 3(29) (2015) 7561-7566
[18] G. Xu, S. Zeng, B. Zhang, M. T. Swihart, K.-T. Yong and P. N. Prasad, "New generation cadmium-free quantum dots for biophotonics and nanomedicine," Chemical reviews 116(19) (2016) 12234-12327
[19] C.-W. Chen, D.-Y. Wu, Y.-C. Chan, C. C. Lin, P.-H. Chung, M. Hsiao and R.-S. Liu, "Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots," The Journal of Physical Chemistry C 119(5) (2015) 2852-2860
[20] J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon and J. Shin, "ZnTe/ZnSe (core/shell) type-II quantum dots: their optical and photovoltaic properties," Chemistry of Materials 22(1) (2009) 233-240
[21] Z. Deutsch, A. Avidan, I. Pinkas and D. Oron, "Energetics and dynamics of exciton–exciton interactions in compound colloidal semiconductor quantum dots," Physical Chemistry Chemical Physics 13(8) (2011) 3210-3219
[22] A. Banerjee, T. Pons, N. Lequeux and B. Dubertret, "Quantum dots–DNA bioconjugates: synthesis to applications," Interface focus 6(6) (2016) 20160064
[23] H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec and M. G. Bawendi, "Self-assembly of CdSe− ZnS quantum dot bioconjugates using an engineered recombinant protein," Journal of the American Chemical Society 122(49) (2000) 12142-12150
[24] H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon and H. Mattoussi, "Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores," Journal of the American Chemical Society 127(11) (2005) 3870-3878
[25] B. C. Mei, K. Susumu, I. L. Medintz, J. B. Delehanty, T. Mountziaris and H. Mattoussi, "Modular poly (ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability," Journal of Materials Chemistry 18(41) (2008) 4949-4958
[26] K. Susumu, B. C. Mei and H. Mattoussi, "Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots," Nature protocols 4(3) (2009) 424
[27] I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. r. Parisi and J. Kolny-Olesiak, "Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine," The Journal of Physical Chemistry C 114(29) (2010) 12784-12791
[28] A. M. Smith, M. C. Mancini and S. Nie, "Bioimaging: second window for in vivo imaging," Nature nanotechnology 4(11) (2009) 710
[29] B. Chen, H. Zhong, W. Zhang, Z. a. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang and B. Zou, "Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance," Advanced Functional Materials 22(10) (2012) 2081-2088
[30] B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov and J. M. Pietryga, "Generalized synthesis of hybrid metal–semiconductor nanostructures tunable from the visible to the infrared," ACS nano 6(5) (2012) 3832-3840
[31] J. Li and N. Wu, "Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review," Catalysis Science & Technology 5(3) (2015) 1360-1384
[32] Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou and X. Liu, "Synthesis of nanocrystalline CuMS2 (M= In or Ga) through a solvothermal process," Inorganic chemistry 39(7) (2000) 1606-1607
[33] Y. Chen, S. Li, L. Huang and D. Pan, "Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots," Inorganic chemistry 52(14) (2013) 7819-7821
[34] P. Rao, W. Yao, Z. Li, L. Kong, W. Zhang and L. Li, "Highly stable CuInS2@ ZnS: Al core@ shell quantum dots: the role of aluminium self-passivation," Chemical Communications 51(42) (2015) 8757-8760
[35] T. Jiang, J. Song, H. Wang, X. Ye, H. Wang, W. Zhang, M. Yang, R. Xia, L. Zhu and X. Xu, "Aqueous synthesis of color tunable Cu doped Zn–In–S/ZnS nanoparticles in the whole visible region for cellular imaging," Journal of Materials Chemistry B 3(11) (2015) 2402-2410
[36] M. C. Brelle, J. Z. Zhang, L. Nguyen and R. K. Mehra, "Synthesis and ultrafast study of cysteine-and glutathione-capped Ag2S semiconductor colloidal nanoparticles," The Journal of Physical Chemistry A 103(49) (1999) 10194-10201
[37] F. Gao, Q. Lu and D. Zhao, "Controllable assembly of ordered semiconductor Ag2S nanostructures," Nano Letters 3(1) (2003) 85-88
[38] Z. Liu, J. Liang, D. Xu, J. Lu and Y. Qian, "A facile chemical route to semiconductor metal sulfide nanocrystal superlattices," Chemical Communications (23) (2004) 2724-2725
[39] J. Liu, P. Raveendran, Z. Shervani and Y. Ikushima, "Synthesis of Ag2S quantum dots in water-in-CO 2 microemulsions," Chemical Communications (22) (2004) 2582-2583
[40] Y. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang and Q. Wang, "Near-infrared photoluminescent Ag2S quantum dots from a single source precursor," Journal of the American Chemical Society 132(5) (2010) 1470-1471
[41] C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu and Q. Wang, "In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window," Biomaterials 35(1) (2014) 393-400
[42] L. Tan, A. Wan, T. Zhao, R. Huang and H. Li, "Aqueous synthesis of multidentate-polymer-capping Ag2Se quantum dots with bright photoluminescence tunable in a second near-infrared biological window," ACS applied materials & interfaces 6(9) (2014) 6217-6222
[43] 蘇. 梁凱玲, 呂奇明, "量子點粒子材料合成與應用介紹," 工業材料雜誌 353 ((2016) 70-82)
[44] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, "CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes," Advanced Functional Materials 26(15) (2016) 2435-2445
[45] J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun and X. Zhong, "Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%," Journal of the American Chemical Society 138(12) (2016) 4201-4209
[46] S. Sahai, A. Ikram, S. Rai, R. Shrivastav, S. Dass and V. R. Satsangi, "Quantum dots sensitization for photoelectrochemical generation of hydrogen: A review," Renewable and Sustainable Energy Reviews 68 (2017) 19-27
[47] J. A. Caputo, L. C. Frenette, N. Zhao, K. L. Sowers, T. D. Krauss and D. J. Weix, "General and efficient C–C bond forming photoredox catalysis with semiconductor quantum dots," Journal of the American Chemical Society 139(12) (2017) 4250-4253
[48] I. Martynenko, A. Litvin, F. Purcell-Milton, A. Baranov, A. Fedorov and Y. Gun'ko, "Application of semiconductor quantum dots in bioimaging and biosensing," Journal of Materials Chemistry B 5(33) (2017) 6701-6727
[49] M. Alibolandi, K. Abnous, M. Ramezani, H. Hosseinkhani and F. Hadizadeh, "Synthesis of AS1411-aptamer-conjugated CdTe quantum dots with high fluorescence strength for probe labeling tumor cells," Journal of fluorescence 24(5) (2014) 1519-1529
[50] M. C. L. Giudice, L. M. Herda, E. Polo and K. A. Dawson, "In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry," Nature communications 7 (2016) 13475
[51] 沈睿丞, "微流體反應合成之量子點電洞傳輸材料運用於鈣鈦礦太陽能電池元件之探討," 長庚大學碩士論文 (2017)
[52] Y. Yin and A. P. Alivisatos, "Colloidal nanocrystal synthesis and the organic–inorganic interface," Nature 437(7059) (2004) 664
[53] I. Hocaoglu, M. N. Cizmeciyan, R. Erdem, C. Ozen, A. Kurt, A. Sennaroglu and H. Y. Acar, "Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots," Journal of Materials Chemistry 22(29) (2012) 14674-14681
[54] S. Banerjee, B. Show, A. Kundu, J. Ganguly, U. Gangopadhyay, H. Saha and N. Mukherjee, "N-acetyle cysteine assisted synthesis of core/ shell Ag2S with enhanced light transmission and diminished reflectance: Surface modifier for c-SiNx solar cells," Journal of industrial and engineering chemistry 40 (2016) 54-61
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊