[1] S. Chand, N. Thakur, S. C. Katyal, P. B. Barman, V. Sharma and P. Sharma, "Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots," Solar Energy Materials and Solar Cells 168 (2017) 183-200
[2] Y. Zhang, J. Xia, C. Li, G. Zhou, W. Yang, D. Wang, H. Zheng, Y. Du, X. Li and Q. Li, "Near-infrared-emitting colloidal Ag2S quantum dots excited by an 808 nm diode laser," Journal of Materials Science 52(16) (2017) 9424-9429
[3] F. T. Rabouw and C. de Mello Donega, Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. ed.; Springer: Place Vol. Published, 2017; p 1-30.
[4] J. Chen, V. Hardev and J. Yurek, Quantum-dot displays: Giving LCDs a competitive edge through color. ed.; Place Vol. 29, Published, 2013; p 12-17.
[5] D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, "A novel organometallic synthesis of highly luminescent CdTe nanocrystals," The Journal of Physical Chemistry B 105(12) (2001) 2260-2263
[6] A. Mews, A. Eychmüller, M. Giersig, D. Schooss and H. Weller, "Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide," The Journal of Physical Chemistry 98(3) (1994) 934-941
[7] M. A. Hines and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals," The Journal of Physical Chemistry 100(2) (1996) 468-471
[8] Z. A. Peng and X. Peng, "Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor," Journal of the American Chemical Society 123(1) (2001) 183-184
[9] H.-Y. Yang, Y.-W. Zhao, Z.-Y. Zhang, H.-M. Xiong and S.-N. Yu, "One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window," Nanotechnology 24(5) (2013) 055706
[10] M. R. Gaeeni, M. Tohidian and M. Majles-Ara, "Green synthesis of CdSe colloidal nanocrystals with strong green emission by the sol–gel method," Industrial & Engineering Chemistry Research 53(18) (2014) 7598-7603
[11] Y.-C. Pu and Y.-J. Hsu, "Multicolored Cd 1− x Zn x Se quantum dots with type-I core/shell structure: single-step synthesis and their use as light emitting diodes," Nanoscale 6(7) (2014) 3881-3888
[12] T. Kim, Y. K. Jung and J.-K. Lee, "The formation mechanism of CdSe QDs through the thermolysis of Cd (oleate)2 and TOPSe in the presence of alkylamine," Journal of Materials Chemistry C 2(28) (2014) 5593-5600
[13] R. Gui, J. Sun, D. Liu, Y. Wang and H. Jin, "A facile cation exchange-based aqueous synthesis of highly stable and biocompatible Ag¬2S quantum dots emitting in the second near-infrared biological window," Dalton Transactions 43(44) (2014) 16690-16697
[14] A. M. Jagtap, J. Khatei and K. K. Rao, "Exciton–phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots," Physical Chemistry Chemical Physics 17(41) (2015) 27579-27587
[15] M. Mirhosseini Moghaddam, M. Baghbanzadeh, A. Sadeghpour, O. Glatter and C. O. Kappe, "Continuous‐Flow Synthesis of CdSe Quantum Dots: A Size‐Tunable and Scalable Approach," Chemistry–A European Journal 19(35) (2013) 11629-11636
[16] M. S. Naughton, V. Kumar, Y. Bonita, K. Deshpande and P. J. Kenis, "High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals," Nanoscale 7(38) (2015) 15895-15903
[17] A. Chakrabarty, S. Marre, R. F. Landis, V. M. Rotello, U. Maitra, A. Del Guerzo and C. Aymonier, "Continuous synthesis of high quality CdSe quantum dots in supercritical fluids," Journal of Materials Chemistry C 3(29) (2015) 7561-7566
[18] G. Xu, S. Zeng, B. Zhang, M. T. Swihart, K.-T. Yong and P. N. Prasad, "New generation cadmium-free quantum dots for biophotonics and nanomedicine," Chemical reviews 116(19) (2016) 12234-12327
[19] C.-W. Chen, D.-Y. Wu, Y.-C. Chan, C. C. Lin, P.-H. Chung, M. Hsiao and R.-S. Liu, "Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots," The Journal of Physical Chemistry C 119(5) (2015) 2852-2860
[20] J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon and J. Shin, "ZnTe/ZnSe (core/shell) type-II quantum dots: their optical and photovoltaic properties," Chemistry of Materials 22(1) (2009) 233-240
[21] Z. Deutsch, A. Avidan, I. Pinkas and D. Oron, "Energetics and dynamics of exciton–exciton interactions in compound colloidal semiconductor quantum dots," Physical Chemistry Chemical Physics 13(8) (2011) 3210-3219
[22] A. Banerjee, T. Pons, N. Lequeux and B. Dubertret, "Quantum dots–DNA bioconjugates: synthesis to applications," Interface focus 6(6) (2016) 20160064
[23] H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec and M. G. Bawendi, "Self-assembly of CdSe− ZnS quantum dot bioconjugates using an engineered recombinant protein," Journal of the American Chemical Society 122(49) (2000) 12142-12150
[24] H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon and H. Mattoussi, "Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores," Journal of the American Chemical Society 127(11) (2005) 3870-3878
[25] B. C. Mei, K. Susumu, I. L. Medintz, J. B. Delehanty, T. Mountziaris and H. Mattoussi, "Modular poly (ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability," Journal of Materials Chemistry 18(41) (2008) 4949-4958
[26] K. Susumu, B. C. Mei and H. Mattoussi, "Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots," Nature protocols 4(3) (2009) 424
[27] I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. r. Parisi and J. Kolny-Olesiak, "Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine," The Journal of Physical Chemistry C 114(29) (2010) 12784-12791
[28] A. M. Smith, M. C. Mancini and S. Nie, "Bioimaging: second window for in vivo imaging," Nature nanotechnology 4(11) (2009) 710
[29] B. Chen, H. Zhong, W. Zhang, Z. a. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang and B. Zou, "Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance," Advanced Functional Materials 22(10) (2012) 2081-2088
[30] B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov and J. M. Pietryga, "Generalized synthesis of hybrid metal–semiconductor nanostructures tunable from the visible to the infrared," ACS nano 6(5) (2012) 3832-3840
[31] J. Li and N. Wu, "Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review," Catalysis Science & Technology 5(3) (2015) 1360-1384
[32] Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou and X. Liu, "Synthesis of nanocrystalline CuMS2 (M= In or Ga) through a solvothermal process," Inorganic chemistry 39(7) (2000) 1606-1607
[33] Y. Chen, S. Li, L. Huang and D. Pan, "Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots," Inorganic chemistry 52(14) (2013) 7819-7821
[34] P. Rao, W. Yao, Z. Li, L. Kong, W. Zhang and L. Li, "Highly stable CuInS2@ ZnS: Al core@ shell quantum dots: the role of aluminium self-passivation," Chemical Communications 51(42) (2015) 8757-8760
[35] T. Jiang, J. Song, H. Wang, X. Ye, H. Wang, W. Zhang, M. Yang, R. Xia, L. Zhu and X. Xu, "Aqueous synthesis of color tunable Cu doped Zn–In–S/ZnS nanoparticles in the whole visible region for cellular imaging," Journal of Materials Chemistry B 3(11) (2015) 2402-2410
[36] M. C. Brelle, J. Z. Zhang, L. Nguyen and R. K. Mehra, "Synthesis and ultrafast study of cysteine-and glutathione-capped Ag2S semiconductor colloidal nanoparticles," The Journal of Physical Chemistry A 103(49) (1999) 10194-10201
[37] F. Gao, Q. Lu and D. Zhao, "Controllable assembly of ordered semiconductor Ag2S nanostructures," Nano Letters 3(1) (2003) 85-88
[38] Z. Liu, J. Liang, D. Xu, J. Lu and Y. Qian, "A facile chemical route to semiconductor metal sulfide nanocrystal superlattices," Chemical Communications (23) (2004) 2724-2725
[39] J. Liu, P. Raveendran, Z. Shervani and Y. Ikushima, "Synthesis of Ag2S quantum dots in water-in-CO 2 microemulsions," Chemical Communications (22) (2004) 2582-2583
[40] Y. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang and Q. Wang, "Near-infrared photoluminescent Ag2S quantum dots from a single source precursor," Journal of the American Chemical Society 132(5) (2010) 1470-1471
[41] C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu and Q. Wang, "In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window," Biomaterials 35(1) (2014) 393-400
[42] L. Tan, A. Wan, T. Zhao, R. Huang and H. Li, "Aqueous synthesis of multidentate-polymer-capping Ag2Se quantum dots with bright photoluminescence tunable in a second near-infrared biological window," ACS applied materials & interfaces 6(9) (2014) 6217-6222
[43] 蘇. 梁凱玲, 呂奇明, "量子點粒子材料合成與應用介紹," 工業材料雜誌 353 ((2016) 70-82)
[44] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, "CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes," Advanced Functional Materials 26(15) (2016) 2435-2445
[45] J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun and X. Zhong, "Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%," Journal of the American Chemical Society 138(12) (2016) 4201-4209
[46] S. Sahai, A. Ikram, S. Rai, R. Shrivastav, S. Dass and V. R. Satsangi, "Quantum dots sensitization for photoelectrochemical generation of hydrogen: A review," Renewable and Sustainable Energy Reviews 68 (2017) 19-27
[47] J. A. Caputo, L. C. Frenette, N. Zhao, K. L. Sowers, T. D. Krauss and D. J. Weix, "General and efficient C–C bond forming photoredox catalysis with semiconductor quantum dots," Journal of the American Chemical Society 139(12) (2017) 4250-4253
[48] I. Martynenko, A. Litvin, F. Purcell-Milton, A. Baranov, A. Fedorov and Y. Gun'ko, "Application of semiconductor quantum dots in bioimaging and biosensing," Journal of Materials Chemistry B 5(33) (2017) 6701-6727
[49] M. Alibolandi, K. Abnous, M. Ramezani, H. Hosseinkhani and F. Hadizadeh, "Synthesis of AS1411-aptamer-conjugated CdTe quantum dots with high fluorescence strength for probe labeling tumor cells," Journal of fluorescence 24(5) (2014) 1519-1529
[50] M. C. L. Giudice, L. M. Herda, E. Polo and K. A. Dawson, "In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry," Nature communications 7 (2016) 13475
[51] 沈睿丞, "微流體反應合成之量子點電洞傳輸材料運用於鈣鈦礦太陽能電池元件之探討," 長庚大學碩士論文 (2017)[52] Y. Yin and A. P. Alivisatos, "Colloidal nanocrystal synthesis and the organic–inorganic interface," Nature 437(7059) (2004) 664
[53] I. Hocaoglu, M. N. Cizmeciyan, R. Erdem, C. Ozen, A. Kurt, A. Sennaroglu and H. Y. Acar, "Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots," Journal of Materials Chemistry 22(29) (2012) 14674-14681
[54] S. Banerjee, B. Show, A. Kundu, J. Ganguly, U. Gangopadhyay, H. Saha and N. Mukherjee, "N-acetyle cysteine assisted synthesis of core/ shell Ag2S with enhanced light transmission and diminished reflectance: Surface modifier for c-SiNx solar cells," Journal of industrial and engineering chemistry 40 (2016) 54-61