[1] 洪宗乾,2015,登革熱研究計畫書。
[2] 陳弘道,2007,「台灣南部地區登革熱擴散地圖及環境影響因子分析」,國立高雄師範大學地理學系碩士論文。[3] 陳薇琳,2012,「臺灣登革熱疫情之時空群集研究」,國立陽明大學生物醫學資訊研究所碩士論文。[4] 陳秋美, 郭宏偉和劉定萍,「高雄市石化氣爆災害對登革熱疫情之影響評析」,臺灣公共衛生雜誌 33.6 (2014): 563-567。[5] 陳景祥,2010,淡江大學統計學系Net-Stat http://netstat.stat.tku.edu.tw/index.php
[6] 張章裕,2012,「社區村里、鄰長登革熱防治行為及其相關因素研究-以苗栗縣竹南鎮為例」,國立臺灣師範大學健康促進與衛生教育學系在職進修碩士論文。[7] 許惠美,2003,登革熱-台灣南部的防疫重點。www2.kuas.edu.tw/edu/faa7/result_92/a4/08.pdf
[8] 曾朝豐,2011,「登革熱病媒蚊綜合防治研究」,國立高雄大學運動健康與休閒學系(所)碩士論文。[9] 黎銘恩,2012,「中草藥石菖蒲(Acorus gramineus)對登革熱病媒蚊埃及斑蚊的驅避及毒殺作用」,國立陽明大學公共衛生研究所國際衛生學程碩士論文。[10] 衛生署疾病管制局,2010,「登革熱病媒蚊生態及習性」。http://cpd.moe.gov.tw/health/pic/news_file/20130220134642.pdf
[11] 衛生署疾病管制局,2013,「登革熱病媒蚊生態及習性介紹」。www.cdc.gov.tw/downloadfile.aspx?fid=8A8A0C03A512F911
[12] Bertero, M. and Boccacci, P., 1998, “Introduction to inverse problems in imaging.”, CRC press.
[13] Byrne, C., 2002, “Iterative oblique projection onto convex subsets and the split feasibility problem.”, Inverse Problems, 18, 441-453.
[14] Byrne, C. (2004). A unied treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems, 20, 103-120.
[15] Censor Y., Elfving T. (1994). A multiprojection algorithm using Bregman projection in a product space. Numerical Algorithms, 8(2), 221-239.
[16] Huang, Y. Y., and Hong, C. C. (2013a). Approximating commonxed points of averaged self-mappings with applications to split feasibility problem and maximal monotone operators in Hilbert spaces. Fixed Point Theory and Applications,2013(1),190.
[17] Huang, Y. Y., and Hong, C. C. (2013b). A unied iterative treatment for solutions of problems of split feasibility and equilibrium in Hilbert spaces. Abstract and Applied Analysis, 2013,1-13.
[18] Hong, C. C. (2015). Algorithms for nonexpansive self-mappings with application to the constrained multiple-set split convex feasibility fixed point problem in Hilbert spaces. Submitted.
[19] Yao, Y., Wu, J., and Liou, Y. C. (2012a). Regularized methods for the split feasibility problem. Abstract and Applied Analysis, 2012,1-13.
[20] Yao, Y., Liou, Y. C., and Shahzad, N. (2012b). A strongly convergent method for the split feasibility problem. Abstract and Applied Analysis, 2012,1-15.