|
[1] Y. Ma, T. G. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C.-H. Wang, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pFET eeprom with 70-åtunnel oxide manufactured in generic logic CMOS processes,” vol. 4, no. 3, pp. 353–358, 2004. [2] T.-Y. Wang, M.-R. Lai, C. Twigg, and S.-Y. Peng, “A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411–422, 2014. [3] K. N. Leung and P. K. T. Mok, “A capacitor-free cmos low-dropout regulator with damping-factor-control frequency compensation,” IEEE Journal of Solid–State Circuits, vol. 38, no. 10, pp. 1691–1702, 2003. [4] E. N. Y. Ho and P. K. T. Mok, “Wide-loading-range fully integrated LDR with a power-supply ripple injection filter,” IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 59, no. 6, pp. 356–360, 2012. [5] X. L. Tan, S. S. Chong, P. K. Chan, and U. Dasgupta, “A LDO regulator with weighted current feedback technique for 0.47 nF-–10 nF capacitive load,” IEEE Journal of Solid–State Circuits, vol. 49, no. 11, pp. 2658–2672, 2014. [6] M. El-Nozahi, A. Amer, J. Torres, K. Entesari, and E. Sanchez-Sinencio, “High PSR low drop-out regulator with feed-forward ripple cancellation technique,” IEEE Journal of Solid–State Circuits, vol. 45, no. 3, pp. 565–577, 2010. [7] C. J. Park, M. Onabajo, and J. S. Martinez, “External capacitor-less low drop-out regulator with 25 dB superior power supply rejection in the 0.4–4 MHz range,” IEEE Journal of Solid–State Circuits, vol. 49, no. 2, pp. 486–501, 2014. [8] V. Gupta and G. Rincon-Mora, “A 5mA 0.6μm CMOS miller-compensated LDO regulator with -27dB worst-case power-supply rejection using 60pF of on-chip capacitance,”2007. [9] X. Qu, Z.-K. Zhou, B. Zhang, and Z.-J. Li, “An ultralow-power fast-transient capacitor-free low-dropout regulator with assistant push–pull output stage,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 2, pp. 96–100,2013. [10] S. S. Chong and P. K. Chan, “A 0.9-uA quiescent current output-capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 60, no. 4,pp. 1072–1081, 2013. [11] J. Guo and K. N. Leung, “A 6-uW chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology,” IEEE Journal of Solid–State Circuits, vol. 45, no. 9, pp. 1896–1905, 2010. [12] Y. I. Kim and S. S. Lee, “A capacitorless LDO regulator with fast feedback technique and low-quiescent current error amplifier,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 6, pp. 326–330, 2013. [13] P. Y. Or and K. N. Leung, “An output-capacitorless low-dropout regulator with direct voltage-spike detection,” IEEE Journal of Solid–State Circuits, vol. 45, no. 2, pp. 458–466, 2010. [14] B. A. Minch, “An inverted CMOS class-AB transconductor featuring rail-to-rail common-mode input rangeand constant transconductance gain,” in IEEE Biomedical Circuits and Systems Conference, October 2014. [15] Y. Li, X. Zhang, Z. Zhang, and Y. Lian, “A 0.45-to-1.2-v fully digital low-dropout voltage regulator with fast-transient controller for near/subthreshold circuits,” IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6341 – 6350, 2016. [16] M. Huang, Y. Lu, S.-W. Sin, S.-P. U, and R. P. Martins, “A fully-integrated digital ldo with coarse-fine-tuning and burst-mode operation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 7, pp. 683 – 687, 2016. [17] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An analog programmable multidimensional radial basis function based classifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, pp. 2148–2158, 2007. [18] P. Pavan, L. Larcher, and A. Marmiroli, Floating Gate Devices: Operation and Compact Modeling. NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW: Kluwer Academic Publishers, 2004. [19] Y. Leblebici and S.-M. Kang, “Modeling and simulation of hot-carrier-induced device degradation in MOS circuits,” IEEE Journal of Solid–State Circuits, vol. 28, no. 5, pp. 585–595, 1993. [20] S. S. Chung, C.-M. Yih, S.-M. Cheng, and M.-S. Liang, “A new technique for hot carrier reliability evaluations of flash memory cell after long-term program/erase cycles,” vol. 46, no. 9, pp. 1883–1889, 1999. [21] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A precision cmos amplifier using floating-gate transistors for offset cancellation,” IEEE Journal of Solid–State Circuits, vol. 42, no. 2, pp. 280–291, 2007. [22] V. Srinivasan, G. J. Serrano, C. M. Twigg, and P. Hasler, “A floating-gate-based programmable cmos reference,” IEEE Journal of Solid–State Circuits, vol. 55, no. 11, pp. 3448–3456, 2008. [23] J. Torres, M. El-Nozahi, A. Amer, S. Gopalraju, R. Abdullah, and K. Entesari, “Low drop-out voltage regulators: Capacitor-less architecture comparison,” IEEE Circuits and Systems Magazine, vol. 14, no. 2, pp. 6 – 26, 2014. [24] B. A. Minch, “A simple class-AB transconductor in CMOS,” in IEEE Proceedings of the International Symposium on Circuits and Systems, May 2008. [25] T. Delbruck, “Bump circuits for computing similarity and dissimilarity of analog voltage,” in IEEE Proceedings of the International Neural Network Society, pp. 475–479, Oct. 1991. [26] D. W. Graham, E. Farquhar, B. Degnan, C. Gordon, and P. Hasler, “Indirect programming of floating-gate transistors,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, no. 5, pp. 951–963, 2007.
|