跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李光益
研究生(外文):LI, KUANG-YI
論文名稱:節能IP和GPON網路的建模、演算法與分析
論文名稱(外文):Modeling, Algorithms, and Analysis of Energy-Efficient IP and Gigabit-capable Passive Optical Access Networks
指導教授:李詩偉李詩偉引用關係
指導教授(外文):STEVEN S. W. LEE
口試委員:侯廷昭吳承崧黃仁竑鄭伯炤顏宏旭張慶龍李詩偉
口試委員(外文):HOU,TING-CHAOWU,CHENG-SHONGHWANG,REN-HUNGCHENG,BO-CHAOYEN,HONG-HSUCHANG,CHING-LUNGSTEVEN S. W. LEE
口試日期:2018-07-24
學位類別:博士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:141
中文關鍵詞:節能IP網路IP快速重新繞路節能GPON網路電源管理鏈路權重分配高存活網路
外文關鍵詞:Energy Efficient IP NetworkIP Fast RerouteEnergy Efficient Gigabit-capable Passive Optical NetworkPower ManagementLink Weight AssignmentSurvivable Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
隨著網路的使用量大量提高,網路的總耗能急遽增加,因此降低網路耗能成為重要的議題。在本論文中,我們著重於IP網路與GPON網路的節能通訊設計,前者主要的研究在探討如何藉由網路控制與規劃將部分網路設備關閉以達到節能目的;後者則使用類神經網路技術控制GPON ONU的休眠時間以達到節能目標。此外於IP網路上亦同時考慮節能與網路存活需求,以保證網路不因執行節能功能而喪失網路存活性。因此本論文將分為三個部分:(1)節能IP網路、(2)具備快速故障重新繞路(Fast Failure Reroute)的節能IP網路和(3)具備自適應狀態轉換控制的節能GPON網路。
第一部分研究針對節能IP網路,我們決定足以支應網路訊務之最小能耗的工作拓樸,以便將不需要的鏈路與節點關閉達到減少IP網路中能源消耗的目標。為此,我們將此問題使用整數規劃模型為一個網路最佳化問題計算路由協定鏈路權重以最小化IP網路總能源消耗。此外,我們也研究動態啟閉鏈路以降低IP網路耗能。研究中我們提出兩種方法分別稱為Global Topology Change (GTC) 以及Local Traffic Redirect (LTR)。當網路操作於GTC時,網路中任何一個鏈路的啟閉狀態將被網路中每一個路由器所知曉,任何鏈路啟閉狀態的改變將會驅動網路拓樸更新。當鏈路狀態改變時,路由器之間會有短暫的時間可能產生網路拓樸不一致的情形,因此可能發生訊務的暫態迴路狀態。當網路操作在LTR時,則鏈路的啟閉狀態並不廣播給每一個路由器,該狀態的改變僅由該鏈路相連的兩端路由器所知悉,因此不論鏈路的啟閉狀態為何,各路由器所認知的拓樸將保持一致,不會因為節能動作而造成影響。我們衡量GTC與LTR以決定何者更適合運用於IP網路。其次,我們研究動態鏈路啟閉機制以便達到最大節能目的。另一方面,由於IP網路依鏈路權重遵守最短路徑路由,使用Fibbing這項技術可以繞過最短路徑路由的限制。因此我們基於Fibbing的框架提出演算法分配路由路徑決定工作拓樸,藉此方法我們可更具彈性的在IP網路上將流量引導至任何特定的路由路徑,相較於使用鏈路權重決定工作拓樸能更有效的減少IP網路能源消耗。
在論文的第二部分中,我們目標為如何在藉由關閉網路設備以節省不必要能源消耗的同時還能達到最大網路存活度,不因執行節能功能而喪失網路存活性。由於在IP網路中,網路資源使用在存活性和節省能源消耗是相互衝突的,要實現高存活性的基本原則是透過額外的網路容量提供備援路徑。但是,在設計節能網路時其目標是相反的。為了最小化能源消耗,使用流量工程技術盡可能的將流量聚合,以盡量減少使用網路資源,藉此可將未使用的網路設備關閉以節省電力。為了讓IP網路具有存活性,IETF 提出了Loop-Free Alternate (LFA)機制以實現具有快速故障重新路由的IP網路。因此在此項研究中我們首先檢視在使用LFA快速故障重新繞路機制下網路欲操作在最大存活度時所需開啟的鏈路數目。研究結果顯示為了達到最大存活度,網路必須開啟大部分的鏈路以致於無法達到節能的目標。我們進一步分析發現這樣的結果主要是因為缺乏路由彈性所造成的。因此,如何在保持高存活性的同時降低耗能是一項頗具挑戰性的任務。我們提出兩個演算法用於高存活性的節能IP網路,使原本資源使用概念衝突的兩者能夠得到平衡,以提供IP網路不僅可以節省耗能並且能夠對抗任何單一鏈路或節點故障時達到100%網路存活度。在第一個演算法中,我們使用IETF RFC 4915 Multi-Topology Routing (MTR)於節能IP網路設計,所提出的方法僅需使用兩個拓樸即可達成,正常時僅需使用第一個拓樸,當有故障發生時則第二個拓樸可以補足第一個拓樸路由不足的部分以提高網路存活度。在第二個演算法中,由於Not-Via快速故障保護方式非常適合運用於設計高存活性節能IP網路,因此我們設計IP網路的工作拓樸並決定鏈路的路由權重以便於將IP網路操作在Not-Via保護機制下以達到最大節能的目標。另一方面,我們也提出動態啟閉IP網路鏈路狀態下使用Not-Via提供網路保護機制的方法,以確保網路於任何節點故障時仍然能保證100%網路存活率。
在論文的第三部分中,文獻上關於節能型被動光網路的設計皆在探討訊務排程以及單就休眠狀態下ONU的休眠時間長度,然而本研究發現,休眠與工作兩項狀態必須一起考慮才能達到較佳的節能效果。此外,單單以平均訊務量加以設計節能型PON是不足的,必須將訊務的流量變異性也納入考慮。本研究針對GPON的特性進行分析並推導出由休眠轉換至工作狀態的最佳訊務量門檻值。我們設計一個類神經網路的控制機制以決定何時該由工作狀態進入休眠狀態。不同於ITU-T標準採用固定休眠時間的方法,本設計會依照訊務狀況動態調整休眠時間。模擬結果顯示使用本研究所設計的方法其效果跟已知所有未來訊務狀況下使用最佳節能控制所消耗的能量僅有很小的差距。
在本論文中,我們提出節能通訊設計於IP網路與GPON網路並對提出的方法進行模擬與數值分析。實驗結果顯示,我們提出的方法皆可有效降低網路耗能,並且在IP網路中不僅可節省網路耗能,也能在發生任何單一鏈路或節點時故障提供100%的網路存活率。本論文最後將回顧本研究相關的研究成果,並提出未來可以再進一步探討的方向。
With the continuously growing usage of the Internet, the total energy consumption of the Internet is rapidly increasing. Therefore, reduction of energy consumption in communication networks has become an important issue. In this dissertation, we focus on designing energy-efficient IP networks and Gigabit-capable Passive Optical Networks (GPONs). We explore a method to achieve the goal of reduction in energy consumption of IP networks by using network control and planning to turn off idle network devices. To meet the energy-conservation goal for GPON networks, we use the neural network technology to control the sleep time of the GPON ONU. In IP networks, we also consider simultaneous network survivability and energy efficiency to guarantee network survivability while complying with the energy saving function. The dissertation is organized into three parts: (i) Design of an Active Topology for Energy-efficient IP Networks, (ii) Survivable Green Active Topology Design in IP Networks, and (iii) Adaptive State Transition Control for Energy-efficient Gigabit-capable Passive Optical Networks.
The first part focuses on the study of energy-efficient IP networks. We consider traffic demands with minimum network capacity to determine a working topology, turning off the router links and nodes to reduce the energy consumption in IP networks. For this purpose, we formulate an integer linear programming model to determine a working topology and assign the link weight. In addition, we investigate a method to dynamically turn on/off links to reduce energy consumption. Two methods are proposed, namely, Global Topology Change (GTC) and Local Traffic Redirect (LTR). In GTC, the on/off state of each link is known by all routers in the network. Any link state change will trigger a network topology update in each router. In the transient period during the link state change, the inconsistency of topology images among different routers would result in traffic loops. In LTR, the link on/off state is known only by the owners of those links. The global network topology images remain fixed for each router irrespective of the link state changes. The benefit of this approach is that the network topology is kept the same in each router. However, each router has to carefully maintain its own routing table to manage the flows through it. Hence, we evaluate and compare GTC and LTR to determine their effectiveness in achieving green IP networks. In addition, we address a dynamic control mechanism of the link on/off state to alter a network topology for power saving. Because IP networks follow the shortest path routing, the Fibbing technology is used to bypass the end-to-end shortest path routing constraint and steer a flow to any specific routing path in IP networks. Therefore, we propose an approach to jointly determine a working topology and assign routing paths based on the Fibbing framework. Compared with using the link weight to determine a working topology, using the Fibbing framework to control IP networks is more effective for reducing the energy consumption.
In the second part of the dissertation, our goal is to achieve maximum network survivability while reducing the energy by turning off the devices. Survivability and energy efficiency are in conflict with each other on network resource usage in IP networks. Provisioning backup paths over spare capacity is the fundamental principle to achieve high survivability. However, to minimize energy consumption, routing and traffic engineering techniques are applied to aggregate flows so as to minimize the network resource usage. The unused network devices are turned off for power conservation. For achieving IP network survivability, the IETF has proposed the Loop-Free Alternate (LFA) schemes to enable IP networks with a fast failover capability. Therefore, we first evaluate the required number of active links for an IP network operating at its maximum survivability ratio when using the LFA fast failure reroute. The result shows that to achieve the maximum survivability, most of the links must be turned on, which counters the energy reduction goal. We identify that this result comes from the inflexibility of IP routing. How to reduce power consumption while maintaining high survivability is considerably challenging. We propose two algorithms for high-survivability energy-efficient IP networks to achieve a balance on the conflict of resource usage. Using these algorithms, we can reduce energy consumption and guarantee 100% of network survivability against any single link or node failure in IP networks. In the first algorithm, an IETF RFC 4915 Multi-Topology Routing (MTR) is used in the energy-efficient IP networks. We use only two topologies for the design. Topology 1 is used for the network operating in the normal state. When failure happens, topology 2 can compensate for topology 1, thus enhancing network survivability. In the second algorithm, a Not-Via fast failure reroute is used for the high-survivability energy-efficient IP networks. We design the working topology of the IP networks and decide the link weight to achieve the maximum energy saving goal under the Not-Via protecting mechanism. In addition, we propose a method to dynamically control the working topology with the Not-Via IPFRR so as to guarantee 100% failure recovery against any single node failure.
In the third part of this dissertation, we investigate a method to reduce power consumption in GPON networks. Most of the past studies focus on scheduling traffic and determining the length of the sleep periods for ONUs operating in the power-saving state. However, our study determines that the design must simultaneously consider the power-saving and the full-power states to attain high energy efficiency. Our study also reveals that traffic distribution is a critical factor. Considering only the average is insufficient, but the variance of packet arrival also must be included when designing a green GPON network. We analyze the power consumption in a GPON and determine the optimal load threshold for triggering a transition from the power-saving state to the full-power state. For the reverse direction, we propose a neural network-based adaptive control scheme to achieve near-optimal control of the state transition. We also propose a burst transmission scheme to determine the sleep period for an ONU in the power-saving state. Unlike the proposal of ITU-T, which uses a fixed length of the sleep period, the state sojourn time in our approach is dynamically adjusted. We carry out extensive simulations to evaluate the performance of the proposed scheme. Simulation results show that the total energy consumption of the proposed scheme is almost equal to the optimal control scheme.
In this dissertation, we propose the design of energy-efficient communication in IP and GPON networks and we present simulation and numerical analysis results. The experimental results show that the proposed method can effectively reduce network energy consumption. The method can not only reduce network energy consumption in IP networks but also guarantee 100% network survivability against any single link or node failure. Finally, this dissertation reviews the results of related research and proposes the direction for future investigations.
誌謝 i
摘要 ii
Abstract v
Contents viii
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Scope and Problem Statement 3
1.3 Organization of the Dissertation 6
Chapter 2 Design of Active Topology for Energy Efficient IP Networks 7
2.1 Link Weight Assignment for Green IP Networks 7
2.1.1 Problem Formulation 10
2.1.2 Numerical Results 15
2.1.3 Summary of Section 2.1 16
2.2 Dynamic Topology Change for Total Energy Consumption in Green IP Networks 18
2.2.1 GTC Control protocol 22
2.2.2 Algorithm for Energy-aware Link State Management 24
2.2.3 Simulation Results 28
2.2.4 Summary of Section 2.2 33
2.3 Routing and Working Topology Assignment for Energy Efficient Fibbing-Controlled IP Networks 34
2.3.1 System Architecture 36
2.3.2 Problem Formulation 38
2.3.3 The Proposed Heuristic Scheme 44
2.3.4 Numerical Results 47
2.3.5 Summary of Section 2.3 52
Chapter 3 Survivable Green Active Topology Design in IP Networks 53
3.1 Energy Efficient Multi-Topology Routing Configurations for Fast
Failure Reroute in IP Networks 53
3.1.1 Proposed Architecture to Achieve Survivable Green IP Network 55
3.1.2 ILP Formulation and Problem Decomposition 58
3.1.3 Numerical Results 65
3.1.4 Summary of Section 3.1 66
3.2 Survivable Green Active Topology Design and Link Weight Assignment
for IP Networks with Not-Via Fast Failure Reroute 69
3.2.1 ILP Formulation and Problem Decomposition 72
3.2.2 Lagrangean Relaxation and Primal Feasible Heuristic Algorithm 76
3.2.3 Numerical Results 82
3.2.4 Summary of Section 3.2 86
3.3 Dynamic Topology Change in Survivable Green IP Networks 87
3.3.1 Simulation Results 87
3.3.2 Summary of Section 3.3 88
Chapter 4 Adaptive State Transition Control for Energy Efficient Gigabit-capable Passive Optical Networks 92
4.1 ONU State Diagrams 94
4.2 State Transition Control between Full Power State and Power Saving
State 98
4.2.1 Optimal State Transition from Power Saving State to Full Power State 98
4.2.2 Adaptive Control Schemes 101
4.3 Transition Control Within the Power Saving State 106
4.3.1 IEEE 802.3az 106
4.3.2 Burst Transmission 106
4.4 Simulation Results 107
4.4.1 Adaptive Control for State Transition between Full Power
State and Power Saving State 110
4.4.2 Adaptive Control for State Transition Inside Power Saving
State 119
4.4.3 Summary of Chapter 4 124
Chapter 5 Concluding Remarks 126
5.1 Summary of Contributions 127
5.2 Ongoing Researches and Future Works 129
Bibliography 132
[1]International Energy Agency, “Digitalization and Energy 2017,” International Energy Agency Report, http://www.iea.org/digital/, Nov. 2017.
[2]Cisco, “Visual networking index: Global Mobile Data Traffic Forecast Update, 2016–2021,” White Paper, Feb. 2017.
[3]M. Gupta and S. Singh, “Greening of the Internet,” in Proc. ACM SIGCOM, pp. 19-26, 2003.
[4]S. Lee, P. Tseng, and A. Chen, “Link Weight Assignment and Loop Free Routing Table Update for Link State Routing Protocols in Energy-Aware Internet,” Future Generation Computer Systems, vol. 28, no. 2, pp. 437-445, Feb. 2012.
[5]A. Cianfrani, V. Eramo, M. Listanti, M. Polverini, and A. Vasilakos,“An OSPF-integrated Routing Strategy for QoS-aware Energy Saving in IP Backbone Networks,” IEEE Trans. Netw. Serv. Manag., vol. 9, no. 3, pp. 254–267, Sep. 2012.
[6]L. Chiaraviglio, A. Cianfrani, M. Listanti, L. Mignano, M. Polverini, “Implementing Energy-aware Algorithms in Backbone Networks: a Transient Analysis,” in Proc. IEEE ICC, 2015.
[7]B. Addis, A. Capone, G. Carello, L. G. Gianoli, and B. Sansò, “On The Energy Cost of Robustness and Resiliency in IP Networks,” Computer Networks (Elsevier), vol. 75, pp. 239-259, 2014.
[8]Yi Zhang, Pulak Chowdhury, Massimo Tornatore, and Biswanath Mukherjee, “Energy Efficiency in Telecom Optical Networks,” IEEE Communications Surveys & Tutorials, vol. 12, no. 4, 2010.
[9]F. Musumeci, A. Hmaity, M. Tornatore, and A. Pattavina, “Energy Efficiency in Reliable Optical Core Networks,” in Proc. IEEE OnlineGreenComm, 2015.
[10]Paschalis Tsiaflakisa, Yung Yib, Mung Chiang, and Marc Moonen, “Green DSL: Energyefficient DSM,” in Proc. IEEE ICC, June 2009.
[11]Björn Skubic and Dave Hood, “Evaluation of ONU Power Saving Modes for Gigabit-Capable Passive Optical Networks,” IEEE Network Magazine, pp. 20-24, March 2011.
[12]Steven S. W. Lee and Alice Chen, “Design and Analysis of a Novel Energy Efficient Ethernet Passive Optical Network,” in Proc. ICN, April, 2010.
[13]G. Kim, S. Kim, D. Lee, H. Yoo, and H. Lim, “Dual cyclic Power Saving Technique for XG-PON,” OSA Opt. Express, vol. 22, no. 105, pp. A1310-A1327, 2014.
[14]N. Dinh and A. Walid, “Power saving protocol for 10G-EPON Systems: a Proposal and Performance Evaluations,” in Proc. IEEE GLOBECOM, 2012.
[15]R. O. C. Hirafuji, A. R. Dhaini, D. A. Khotimsky, and D. R. Campelo, “Energy Efficiency Analysis of the Watchful Sleep Mode in Next-Generation Passive Optical Networks,” in Proc. IEEE GLOBECOM, 2012.
[16]Hong-Hsu Yen, Steven S. W. Lee, and Florence G. H. Yap, “A Novel Optimization-based Bandwidth-aware Minimum Power Multicast Routing Algorithm in Green Wireless Networks,” Springer The Journal of Supercomputing, vol. 62, no. 3, pp. 1119-1138, Dec. 2012.
[17]S. D’Oro, A. Zappone, S. Palazzo, and M. Lops, “A Learning-Based Approach to Energy Efficiency Maximization in Wireless Networks,” in Proc. IEEE WCNC, 2018.
[18]Kai Lin, Min Chen, Sherali Zeadally, Joel J.P.C. Rodrigues, “Balancing Energy Consumption with Mobile Agents in Wireless Sensor Networks,” Future Generation Computer Systems, in Press.
[19]Benoît Garbinato, Denis Rochat, Marco Tomassini, François Vessaz, “Injecting Power-awareness Into Epidemic Information Dissemination in Sensor Networks,” Future Generation Computer Systems, pp. 868-876, vol. 26, 2010.
[20]Y. Liu and J. Li, “Linear Precoding to Optimize Throughput, Power Consumption and Energy Efficiency in MIMO Wireless Sensor Networks,” IEEE Trans. on Comm., vol. 66, no. 5, pp. 2122–2136, Sep., 2018.
[21]“Code of Conduct on Energy Consumption of Broadband Equipment,” version 4, European Commission, Institute for Energy, Renewable Energy Unit, 10 February 2011.
[22]Global Action Plan, “An Inefficient Truth,” Global Action Plan Report, http://www.globalactionplan.org.uk/sites/gap/files/An Inefficient Truth - Executive Summary.pdf, Dec. 2007.
[23]R. Bolla, F. Davoli, R. Bruschi, K. Christensen, F. Cucchietti, and S. Singh, “The Potential Impact of Green Technologies in Next-Generation Wireline Networks: Is There Room for Energy Saving Optimization? ,” IEEE Communications Magazine, vol. 49, no. 8, pp. 80-86, August 2011.
[24]A. S. G. Andrae and T. Edler, “On Global Electricity Usage of Communication Technology: Trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015.
[25]J. Malmodin and D. Lundén, “The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010-2015,” in Proc. ICT4S, May 2018.
[26]J. Malmodin and D. Lundén, “The Electricity Consumption and Operational Carbon Emissions of ICT Network Operators 2010-2015,” Technical Report from the KTH Centre for Sustainable Communications, Sweden, Jan. 2018.
[27]A. Otaka, “Power Saving Ad-Hoc Report,” in IEEE 802.3 Interim Meet., Seoul, Korea, Sep. 2008.
[28]International Energy Agency, “More Data, Less Energy: Making network standby more efficient in billions of connected devices,” International Energy Agency Report, http://www.iea.org/etp/networkstandby, June 2014.
[29]S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An Approach to Alleviate Link Overload as Observed on an IP Backbone,” in Proc. IEEE INFOCOM, 2003.
[30]P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A Power Benchmarking Framework for Networking Devices,” in Proc. IFIP Netw. Conf., Aachen, Germany, May 2009.
[31]Brunilde Sansò and Hakim Mellah, “On Reliability, Performance and Internet Power Consumption,” in Proc. DRCN, 2009.
[32]G. Rétvári, L. Csikor, J. Tapolcai, G. Enyedi, and A. Császár, “Optimizing IGP Link Costs for Improving IP-level Resilience,” in Proc. DRCN, 2011.
[33]“Draft ITU-T Recommendation G.987.3: XG-PON TC Layer Specification,” TD 272 Rev.3 (PLEN/15), ITU-T Study Group 15, Geneva, 31 May - 11 June 2010
[34]“GPON Power Conservation,” ITU-T G-series Recommendations – Supplement 45, ITU-T Study Group 15, May 2009.
[35]Steven S. W. Lee and Alice Chen, “Adaptive Control and Performance Evaluation of Burst Transmission in Energy Efficient GPON,” in Proc. IEEE ISCC, 2012.
[36]S.H. Shah Newaz, Angel Cuevas, Gyu Myoung Lee, Noel Crespi, and Jun Kyun Choi, “Evaluating Energy Efficiency of ONUs Having Multiple Power Levels in TDM-PONs,” IEEE Communications Letters, vol. 17, no. 6, pp. 1248-1251, June 2013.
[37]M. A. Laughton and M. G. Say, Electrical Engineer's Reference Book, Butterworth, 1990.
[38]M. Goyal, K. K. Ramakrishnan, and W.-C. Feng, “Achieving Faster Failure Detection in OSPF Networks,” in Proc. IEEE ICC, May, 2003.
[39]O. Okonor, N. Wang, S. Georgoulas, and Z. Sun, “Green Link Weights for Disruption-Free Energy-Aware Traffic Engineering,” IEEE Systems Journal, vol. 11, no. 2, pp. 661-672, June 2017.
[40]S. Antonakopoulos, S. Fortune, and L, Zhang “Power-aware Routing with Rate-adaptive Network Elements,” in Proc. IEEE GLOBECOM 2010 Workshop on Green Communications, Dec. 2010.
[41]A. P. Bianzino, C. Chaudet, F. Larroca, D. Rossi, and J.-L. Rougier, “Energy-Aware Routing: a Reality Check,” in Proc. IEEE GLOBECOM 2010 Workshop on Green Communications, Dec. 2010.
[42]L. Chiaraviglio, M. Mellia, and F. Neri, “Reducing Power Consumption in Backbone Networks,” in Proc. IEEE ICC, pp. 1-6, June 2009.
[43]L. Chiaraviglio, M. Mellia, and F. Neri, “Energy-aware Backbone Networks: a Case Study”, in Proc. IEEE ICCW, pp. 1-5, June 2009.
[44]E. Amaldi, A. Capone, L. G. Gianoli, and L. Mascetti, “A MILP-Based Heuristic for Energy-Aware Traffic Engineering with Shortest Path Routing,” in Network Optimization. New York, NY, USA: Springer, 2011, pp. 464–477.
[45]M. Polverini, A. Cianfrani, A. Coiro, and M. Listanti, “Closing the Gap Among IP and Per-Flow Green Routing Solutions: The Tunneling Approach,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 12, pp. 2774-2788, June 2015.
[46]CPLEX 12.8 [Online]. Available: https://www.ibm.com/bn-en/marketplace/ibm-ilog-cplex
[47]A. Atlas and A. Zinin, “Basic Specification for IP Fast Reroute: Loop-Free Alternates,” IETF RFC 5286, Sept. 2008.
[48]J. Chabarek et al., “Power Awareness in Network Design and Routing,” in Proc. IEEE INFOCOM, 2008.
[49]B. Fortz and M. Thorup, “Internet Traffic Engineering by Optimizing OSPF Weights,” in Proc. IEEE INFOCOM, 2000.
[50]S. S. W. Lee et al., “Multi-Topology Design and Link Weight Assignment for Green IP Networks,” in Proc. IEEE ISCC, 2011.
[51]S. S. W. Lee et al., "A Distributed Link Management Algorithm for Energy Efficient IP Networks," in Proc. IEEE GLOBECOM, 2011.
[52]IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, IEEE Std. 1588-2008, Jul. 24, 2008, Revision of IEEE Std 1588-2002.
[53]J. Han et al., “A Practical Implementation of IEEE 1588-2008 Transparent Clock for Distributed Measurement and Control Systems,” IEEE Trans. on Instrum. and Meas. , vol. 59, no. 2, pp. 433-439, Feb. 2010.
[54]X. D. Chen, “Design and Implementation of IEEE 1588 Precision Time Protocol,” Master Dissertation, National Chung Cheng University, 2011.
[55]P. Ferrari et al., “Experimental Characterization of Uncertainty Sources in a Software-Only Synchronization System,” IEEE Trans. on Instrum. and Meas. , vol. 61, no. 5, pp. 1512-1521, May 2012.
[56]P. Francois et al., “Avoiding Transient Loops During the Convergence of Link-State Routing Protocols,” IEEE/ACM Trans. on Networking , vol. 15, no. 6, pp. 1280-1292, Dec. 2007.
[57]S. Vissicchio, O. Tilmans, L. Vanbever, J. Rexford, “Central control over distributed routing,” ACM SIGCOMM Computer Communication Review, vol. 45, pp. 43-56, Oct. 2015.
[58]S. Vissicchio, L. Vanbever, J. Rexford, “Sweet Little Lies: Fake Topologies for Flexible Routing,” in Proc. ACM Workshop on Hot Topics in Networks, 2014.
[59]J. Moy, “OSPF Version 2,” RFC 2328, 1998.
[60]sFlow. [Online]. Available: http://www.sflow.org/
[61]NetFlow Analyzer. [Online]. Available: https://www.manageengine.com/products/netflow/
[62]G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “IP Fast ReRoute: Loop Free Alternates Revisited,” in Proc. IEEE INFOCOM, 2011.
[63]P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault, “Multi-topology (MT) Routing in OSPF," IETF RFC 4915, June 2007.
[64]A. Kvalbein, A. F. Hansen, T. Čičić, S. Gjessing, and O. Lysne, “Fast IP Network Recovery Using Multiple Routing Configurations,” in Proc. IEEE INFOCOM, Apr. 2006.
[65]X. Wang, S. Wang, and L. Li, “Robust Traffic Engineering Using Multi-Topology Routing,” in Proc. IEEE GLOBECOM, 2009.
[66]S. Bae and T. R. Henderson, “Traffic Engineering with OSPF Multi-Topology Routing,” in Proc. IEEE MILCOM, 2007.
[67]A. Kvalbein, A. F. Hansen, T. Čičić, S. Gjessing, and O. Lysne, “Multiple Routing Configurations for Fast IP Network Recovery,” IEEE/ACM Transactions on Networking, vol. 17, no. 2, Apr. 2009.
[68]T. Čičić,, A. F. Hansen, A. Kvalbein, M. Hartmann, R. Martin, M. Menth, S. Gjessing, and O. Lysne, “Relaxed Multiple Routing Configurations: IP Fast Reroute for Single and Correlated Failures,” IEEE Transactions on Network and Service Management, vol. 6, no. 1, pp. 1-13, March 2009.
[69]S. Bryant, C. Filsfils, S. Previdi, and M. Shand, “IP Fast Reroute Using Tunnels,” IETF draft, draft-bryant-ipfrr-tunnels-03, Nov. 2007.
[70]S. Bryant, S. Previdi, and M. Shand, “IP Fast Reroute Using Not-via Addresses,” IETF draft, draft-ietf-rtgwg-ipfrr-notvia-addresses-09, June 2012.
[71]Ning Wang, Christos Michael, and Kin Hon Ho, “Disruption-Free Green Traffic Engineering with NotVia Fast Reroute,” IEEE Communications Letter, pp. 1123-1125, vol. 15, no. 10, 2011.
[72]Chamara Gunaratne, Ken Christensen, Bruce Nordman, and Stephen Suen, “Reducing the Energy Consumption of Ethernet with Adaptive Link Rate (ALR),” IEEE Transactions on Computers, vol. 57, no. 4, pp.448-461, 2008.
[73]Kenneth J. Christensen, Chamara Gunaratne, Bruce Nordman, and Alan D. George, “The Next Frontier for Communications Networks: Power Management,” Computer Communications, vol. 27, no. 18, Dec. 2004.
[74]Jingjing Zhang and Nirwan Ansari, “Toward Energy-Efficient 1G-EPON and 10G-EPON with Sleep-Aware MAC Control and Scheduling,” IEEE Communications Magazine, pp. S33-S38, Feb. 2011.
[75]Ryogo Kubo, Jun-ichi Kani, Hirotaka Ujikawa, Takeshi Sakamoto, Yukihiro Fujimoto, Naoto, to Yoshimoto, and Hisaya Hadama, “Study and Demonstration of Sleep and Adaptive Link Rate Control Mechanisms for Energy Efficient 10G-EPON,” IEEE/OSA Journal of Optical Communications and Networking, vol. 2, no. 9, pp. 716-728, Sept. 2010.
[76]Shing-Wa Wong, Luca Valcarenghi, She-Hwa Yen, Divanilson R. Campelo, Shinji Yamashita, and Leonid Kazovsky, “Sleep Mode for Energy Saving PONs: Advantages and Drawbacks,” in Proc. IEEE GreenCom, 2009.
[77]Ahmad R. Dhaini, Pin-Han Ho, and Gangxiang Shen, ”Toward Green Next-generation Passive Optical Networks,” IEEE Commun. Mag., vol. 29, no. 11, pp. 94-101, Nov. 2011.
[78]Ahmad R. Dhaini, Pin-Han Ho, Gangxiang Shen, and Basem Shihada, “Energy Efficiency in TDMA-Based Next-Generation Passive Optical Access Networks,” IEEE/ACM Transactions on Networking, vol. 22, no. 3, pp. 850-863, June. 2014.
[79]Jun-ichi Kani, “Power Saving Techniques and Mechanisms for Optical Access Networks Systems,” Journal of Lightwave Technology, vol. 31, no. 4, pp. 563-570, February 2013.
[80]Jan-Wen PENG, Hsing-Yi Wu, Chung-Ju Chang, “Dynamic Bandwidth Allocation Method of Ethernet Passive Optical Network,” US patent, US20100254707 A1.
[81]Media Access Control Parameters, Physical Layers, and Management Parameters for Energy-Efficient Ethernet, IEEE Standard 802.3az-2010.
[82]ITU-T G.984.4 ONT management and control interface (OMCI) specification.
[83]W. Willinger, M. Taqqu, and A. Erramilli, “A Bibliographical Guide to Self-similar Traffic and Performance Modeling for Modern High-speed Networks,” in Stochastic Networks, F. P. Kelly, S. Zachary, and I. Ziedins, eds., Oxford University Press, 1996, pp. 339-366.
[84]W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-similarity Through High-variability: Statistical analysis of Ethernet LAN traffic at the source level,” in Proc. ACM SIGCOMM, pp. 100-113, August 1995.
[85]W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On The Self-similar Nature of Ethernet Traffic,” IEEE/ACM Transactions on Networking, vol. 2, no. 1, pp. 1-15, 1994.
[86]Tzvetelina Battestilli and Harry Perros, “An Introduction to Optical Burst Switching,” IEEE Communications Magazine, vol. 41, no. 8, pp. s10-s15, Aug. 2003.
[87]Miguel Rodriguez-Perez, Sergio Herreria-Alonso, Manuel Fernandez-Veiga, and Candido Lopez-Garcia, “Improving Energy Efficiency in Upstream EPON Channels by Packet Coalescing,” IEEE Transactions on Communications, vol. 60, no. 4, pp. 929-932, April 2012.
[88]Glen Kramer, Synthetic self-similar traffic generation: http://glenkramer.com/trf_research.shtml
[89]Steven S. W. Lee, Kuang-Yi Li, Kwan-Yee Chan, Guan-Hao Lai, and Yao Chuan Chung, “Software-based Fast Failure Recovery for Resilient OpenFlow Networks,” in Proc. IEEE RNDM 2015, Munich, Germany, Oct. 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top