|
(1) Unep.org. (2017). Waste Agricultural Biomass | Global Partnership on Waste Management. [online] Available at: http://www.unep.org/gpwm/what-we-do/waste-agricultural-biomass (2) 行政院農委會,農業纖維廢棄物歷年表,90-104年 (3) Haug, R.T. 1993. The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton, Fl. 717 pages. (4) Kaparaju, P., Serrano, M., Thomsen, A., Kongjan, P. and Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), pp.2562-2568. (5) Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S (2008) More about anaerobic digestion (AD). In: Al Seadi T (ed) Biogas handbook. University of Southern Denmark, Esbjerg (6) REN21. (2015). Renewables 2015 Global Status Report. REN21 (7) Wang, X., Lu, X., Li, F. and Yang, G. (2014). Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLoS ONE, 9(5), p.e97265. (8) Xu, S., Karthikeyan, O., Selvam, A. and Wong, J. (2012). Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bioresource Technology, 126, pp.425-430. (9) Fernández, J., Pérez, M. and Romero, L. (2010). Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration. Bioresource Technology, 101(16), pp.6322-6328. (10) Li, Y., Zhang, R., He, Y., Zhang, C., Liu, X., Chen, C., & Liu, G. (2014). Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR). Bioresource technology, 156, 342-347. (11) Abbasi, T., Tauseef, S. and Abbasi, S. (2012). Biogas Energy. New York, NY: Springer New York. (12) Li, K., Liu, R. and Sun, C. (2016). A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews, 54, pp.857-865. (13) Wang X, Lu X, Li F, Yang G (2014) Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLOS ONE 9(5): e97265. (14) Effect of carbon to nitrogen ratio on biogas production. (2013). [ebook] UK: I. J. Dioha, C.H. Ikeme, T. Nafi’u, N. I. Soba an d Yusuf M.B.S., pp.Vol. 1 No. 3, pp.1 -10. Available at: http://www.eajournals.org/wp-content/uploads/EFFECT-OF-CARBON-TO-NITROGEN-RATIO-ON-BIOGAS-PRODUCTION.pdf (15) Ilukor, J. and Oluka, S. (1995). Carbon-to-nitrogen ratios in agricultural residues. Environmental Monitoring and Assessment, 38-38(2-3), pp.271-275. (16) Riya, S., Suzuki, K., Terada, A., Hosomi, M. and Zhou, S. (2016). Influence of C/N Ratio on Performance and Microbial Community Structure of Dry-Thermophilic Anaerobic Co-Digestion of Swine Manure and Rice Straw. Journal of Medical and Bioengineering, 5(1), pp.11-14. (17) Li, K., Liu, R. and Sun, C. (2016). A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews, 54, pp.857-865. (18) Alvira, Pablo & Negro, María & Ballesteros, Ignacio & Gonzalez, Alberto & Ballesteros, Mercedes. (2016). Steam Explosion for Wheat Straw Pretreatment for Sugars Production. Bioethanol. 2. . 10.1515/bioeth-2016-0003. (19) Song, Z., GaiheYang, Liu, X., Yan, Z., Yuan, Y. and Liao, Y. (2014). Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion. PLoS ONE, 9(4), p.e93801 (20) 稻稈產製酒精之原料前處理技術回顧與評析. (2013).核能研究所: 陳文華, p.7-12. Available at: http://km.twenergy.org.tw/KnowledgeFree/knowledge_more?id=813 (21) Talebnia, F., Karakashev, D. and Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), pp.4744-4753. (22) Herrmann, C., Heiermann, M., Idler, C. and Prochnow, A. (2012). Particle Size Reduction during Harvesting of Crop Feedstock for Biogas Production I: Effects on Ensiling Process and Methane Yields. BioEnergy Research, 5(4), pp.926-936. (23) Amin, F., Khalid, H., Zhang, H., Rahman, S., Zhang, R., Liu, G. and Chen, C. (2017). Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express, 7(1). (24) Yanfeng He, Yunzhi Pang, Xiujin Li, Yanping Liu, Rongping Li, and Mingxia Zheng, Investigation on the Changes of Main Compositions and Extractives of Rice Straw Pretreated with Sodium Hydroxide for Biogas Production, Energy & Fuels 2009 23 (4), 2220-2224 DOI: 10.1021/ef8007486 (25) Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W. and Xiao, M. (2011). Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology, 102(24), pp.11177-11182. (26) Horn, S., Estevez, M., Nielsen, H., Linjordet, R. and Eijsink, V. (2011). Biogas production and saccharification of Salix pretreated at different steam explosion conditions. Bioresource Technology, 102(17), pp.7932-7936. (27) Van Soest P.J., Robertson J.B., Lewis B.A. (1991): Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74, 3583–3597. (28) Zheng Chen Scott Schwartz, Lukas Wagner, and Webb Miller (2000), "A greedy algorithm for aligning DNA sequences", J Comput Biol 2000; 7(1-2):203-14 (29) 養豬三段式廢水與污泥處理技術. (n.d.).郭猛德 、蕭庭訓 、王政騰, pp.9-10. Available at: http://tagis.coa.gov.tw/pages/Data/Ref/2.pdf [Accessed 6 Sep. 2017]. (30) Teghammar, A., Karimi, K., Sárvári Horváth, I. and Taherzadeh, M. (2012). Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass and Bioenergy, 36, pp.116-120. (31) Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F. and Wang, Y. (2013). Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Management, 33(12), pp.2653-2658. (32) Sharma, S., Mishra, I., Sharma, M. and Saini, J. (1988). Effect of particle size on biogas generation from biomass residues. Biomass, 17(4), pp.251-263. (33) Zhu, S., Huang, W., Huang, W., Wang, K., Chen, Q. and Wu, Y. (2015). Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent. Applied Energy, 154, pp.190-196. (34) Kshirsagar, S., Waghmare, P., Chandrakant Loni, P., Patil, S. and Govindwar, S. (2017). Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. (35) Weerasai, K., Suriyachai, N., Poonsrisawat, A., Arnthong, J., Unrean, P., Laosiripojana, N., & Champreda, V. (2014). Sequential Acid and Alkaline Pretreatment of Rice Straw for Bioethanol Fermentation. BioResources, 9(4), 5988-6001. doi:10.15376/biores.9.4.5988-6001 (36) Zhang, R. (1999). Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresource Technology, 68(3), pp.235-245. (37) Song, Z., Yang, G., Guo, Y., & Zhang, T. (2012). Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion . BioResources, 7(3), 3223-3236. (38) Chandra, R., Takeuchi, H., Hasegawa, T. and Kumar, R. (2012). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43(1), pp.273-282. (39) Osman, G. A., El-Tinay, A. H., & Mohamed, E. F. (2006). Biogas production from agricultural wastes. Journal of Food Technology, 4(1), 37-39. (40) Isci, A. and Demirer, G. (2007). Biogas production potential from cotton wastes. Renewable Energy, 32(5), pp.750-757. (41) Mussoline, W., Esposito, G., Lens, P., Garuti, G. and Giordano, A. (2012). Design considerations for a farm-scale biogas plant based on pilot-scale anaerobic digesters loaded with rice straw and piggery wastewater. Biomass and Bioenergy, 46, pp.469-478. (42) Shi, L., Huang, M., Zhang, W. and Liu, H. (2012). Effect of Dry Matter Concentration on Dry Anaerobic Digestion of Animal Manure and Straw. Applied Mechanics and Materials, 253-255, pp.897-902. (43) Zitomer, D. and Shrout, J. (1998). Feasibility and benefits of methanogenesis under oxygen-limited conditions. Waste Management, 18(2), pp.107-116.
|