|
[1]R. Muller et al., "A Minimally Invasive 64-Channel Wireless μECoG Implant," IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 344-359, Jan. 2015. [2]J. Xu et al., "A Wearable 8-Channel Active-Electrode EEG/ETI Acquisition System for Body Area Networks," IEEE Journal of Solid-State Circuits, vol. 49, no. 9, pp. 2005-2016, Sep. 2014. [3]B. Razavi, Design of Analog CMOS Integrated Circuits, McHraw Hill, 2001. [4]W. Liu, X. Jin, J. Chen, M. C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan, K. Hui, J. Huang, R. Tu, P.K. Ko, and Chenming Hu, BSIM3v3.2.2 MOSFET Model Users'' Manual, Berkeley Technical Reports, 1999. [5]W. Kester, Understand SINAD, ENOB, SNR, THD, THD+N, and SFDR So You Don’t Get Lost in the Noise Floor, Analog Devices, 2009. [6]J. F. Witte, K. A. A. Makinwa, and J. H. Huijsing, Dynamic Offset Compensated CMOS Amplifiers, Springer, 2009. [7]M. A. P. Pertijs and W. J. Kindt, "A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping," IEEE Journal of Solid-State Circuits, vol.45, no.10, pp. 2044 - 2056, Oct. 2010. [8]Q. Fan, K. A. A. Makinwa, and J. H. Huijsing, Capacitively-Coupled Chopper Amplifiers, Springer, 2017. [9]R. Wu, K. A. A. Makinwa, and J.H. Huijsing, “A Chopper Current-Feedback Instrumentation Amplifier with a 1 MHz 1/f Noise Corner and an AC-Coupled Ripple Reduction Loop,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3232 - 3243, Dec. 2009. [10]Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8µW 1µV-Offset Capacitively-Coupled Chopper Instrumentation Amplifier in 65nm CMOS for Wireless Sensor Nodes,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1534 - 1543, Jul. 2011. [11]J. Xu, R. F. Yazicioglu, B. Grundlehner, P. Harpe, K. A. A. Makinwa, and C. Van Hoof, “A 160 μW 8-Channel Active Electrode System for EEG Monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, iss. 6, pp. 555–567, Dec. 2011. [12]J. Angevare, K. A. A. Makinwa “A 6800-um2 Resistor-Based Temperature Sensor in 180-nm CMOS”, in 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), Tainan, Taiwan, 2018, pp. 43–46. [13]C. H. Weng, C. K. Wu, and T. H. Lin, “A CMOS Thermistor-Embedded Continuous-Time Delta-Sigma Temperature Sensor with a Resolution FoM of 0.65 pJ°C2,” IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp.2491-2499, Nov. 2015. [14]H. M. Chuang, K. B. Thei, S.F. Tsai, and W.C. Liu, “Temperature-Dependent Characteristics of Polysilicon and Diffused Resistors,” IEEE Transaction on Electron Devices, vol. 50, no. 5, pp.1413-1415, May. 2003. [15]S. Pan, K. A. A. Makinwa, “A 0.25 mm2-Resistor-Based Temperature Sensor with an Inaccuracy of 0.12 °C (3σ) From −55 °C to 125 °C,” IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3347 - 3355, Dec. 2018. [16]S. Pavan, R. Schreier, and G. C. Temes (2017). Understanding Delta-sigma Data Converters. (2nd ed.). New Jersey: Wiley. [17]S. Pavan, “Systematic Design Centering of Continuous Time Oversampling Converters,” IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 57, no. 3, pp.158-162, Mar. 2010. [18]S. Pavan, “Continuous-Time Delta-Sigma Modulator Design Using the Method of Moments,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 61, no. 6, pp.1629-1637, Jun. 2014. [19]S. Billa, A. Sukumaran, and S. Pavan, “Analysis and Design of Continuous-Time Delta–Sigma Converters Incorporating Chopping,” IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp.2350-2361, Sep. 2017. [20]T. Nandi, K. Boominathan, and S. Pavan, “Continuous-Time ΔƩ Modulators with Improved linearity and Reduced Clock Jitter Sensitivity Using the Switched-Capacitor return-to-Zero DAC,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp.1795-1805, Aug. 2013. [21]H. Jiang, C. Ligouras, S. Nihtianov, and K. A. A. Makinwa, “A 4.5 nV/√Hz Capacitively Coupled Continuous-Time Sigma-Delta Modulator with an Energy-Efficient Chopping Scheme,” IEEE Solid-State Circuits Letters, vol. 1, no. 1, pp.18-21, Jan. 2018. [22]Y. Zhang, C. H. Chen, T. He, and G. C. Temes, “A Continuous-Time Delta-Sigma Modulator for Biomedical Ultrasound Beamformer Using Digital ELD Compensation and FIR Feedback,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 62, no. 7, pp.1689-1698, Jul. 2015. [23]I. J. O’Connell, and C. Lyden, “A Novel Noise Efficient Feedback DAC Within a Switched Capacitor ƩΔ ADC,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 52, no. 1, pp.71-78, Jan. 2005. [24]S. Pan, Y. Luo, S. H. Shalmany, and K. A. A. Makinwa “A Resistor-Based Temperature Sensor with a 0.13pJ·K2 Resolution FOM,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 158-159. [25]U. Sönmez, F. Sebastiano, and K. A. A. Makinwa, “A 1650-μm2 0.9-1.2V Thermal Diffusivity Temperature Sensor in 40nm CMOS,” in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 206-207. [26]M. H. Roshan et al., “A MEMS-Assisted Temperature Sensor With 20-μK Resolution, Conversion Rate of 200 S/s, and FOM of 0.04 pJK2,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.185-197, Jan. 2017. [27]K. Yang, Q. Dong, W. Jung, Y. Zhang, M. Choi, D. Blaauw, and D. Sylvester, “A 0.6nJ -0.22/+0.19°C Inaccuracy Temperature Sensor Using Exponential Subthreshold Oscillation Dependence,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp.160–161. [28]B. Yousefzadeh, and K. A. A. Makinwa, “A BJT-Based Temperature Sensor with a Packaging Robust Inaccuracy of ±0.3°C (3σ) from -55°C to +125°C After Heater-Assisted Voltage Calibration,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp.162–163. [29]A. Mordakhay, and J. Shor, “Miniaturized, 0.01 mm2, Resistor-Based Thermal Sensor With an Energy Consumption of 0.9 nJ and a Conversion Time of 80 μs for Processor Applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 10, pp.3356-3367, Oct. 2018. [30]W. Choi, Y. Lee, S. Kim, S. Lee, J. Jang, J. Chun, K. A. A. Makinwa, and Y. Chae, “A Compact Resistor-Based CMOS Temperature Sensor with an Inaccuracy of 0.12 ◦C (3σ) and a Resolution FoM of 0.43 pJ· K2 in 65-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp.3356-3367, Dec. 2018. [31]S. Pan, Ç. Gürleyük, M. F. Pimenta, and K. A. A. Makinwa, “A 0.12 mm2 Wien-Bridge Temperature Sensor with 0.1°C (3σ) Inaccuracy from -40°C to 180°C,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2019, pp. 184–185. [32]S. Pan, and K. A. A. Makinwa, “A Wheatstone Bridge Temperature Sensor with a Resolution FoM of 20fJ·K2,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2019, pp. 186–187.
|