|
[1].Y. Hwang, C. S. Park, J. Kim, J. Kim, J. Y. Lim, H. Choi, J. Jo, and E. Lee, “Effect of laser damage etching on i-PERC solar cells,” Renew. Energy, vol. 79, no. 1, pp. 131–134, 2015. [2].C. Osterwald, G. Cheek, J. B. Dubow, and V. R. P. Verneker, “Molybdenum trioxide (MoO3)/silicon photodiodes,” Appl. Phys. Lett., vol. 35, no. 10, pp. 775–776, 1979. [3].J. Bullock, D. Yan, A. Cuevas, Y. Wan, and C. Samundsett, “N- and p-type silicon solar cells with molybdenum oxide hole contacts,” Energy Procedia, vol. 77, pp. 446–450, 2015. [4].W. Yoon, J. E. Moore, E. Cho, D. Scheiman, N. A. Kotulak, E. Cleveland, Y. W. Ok, P. P. Jenkins, A. Rohatgi, and R. J. Walters, “Hole-selective molybdenum oxide as a full-area rear contact to crystalline p-type Si solar cells,” Jpn. J. Appl. Phys., vol. 56, pp. 08MB18, 2017. [5].C. Battaglia, S. M. d. Nicolas, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, and A. Javey, “Silicon heterojunction solar cell with passivated hole selective MoOx contact,” Appl. Phys. Lett., vol. 104, no. 11, pp. 113902, 2014. [6].L. Gerling, S. Mahato, C. Voz, R. Alcubilla, and J. Puigdollers, “Characterization of transition metal oxide/silicon heterojunctions for solar cell applications,” Appl. Sci., vol. 5, no. 4, pp. 695–705, 2015. [7].L. G. Gerling, S. Mahato, A. M. Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, and J. Puigdollers, “Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells, vol. 145, pp. 109–115, 2016. [8].M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3,” Adv. Funct. Mater., vol. 23, no. 2, pp. 215–226, 2013. [9].J. Tong, Y. Jiang, N. Song, S. Lim, O. Zi, and A. Lennon, “Hydrogen molybdenum bronzes for hole transport layers on crystalline silicon solar cells,” IEEE 44th Photovolt. Spec. Conf. PVSC, pp. 1–3, 2018. [10].C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chena, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett., vol. 93, no. 19, pp. 3–6, 2008. [11].X. Haitao and Z. Xiang, “Investigation of hole injection enhancement by MoO3 buffer layer in organic light emitting diodes,” J. Appl. Phys., vol. 114, no. 24, pp. 30–34, 2013. [12].M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Adv. Funct. Mater., vol. 22, no. 21, pp. 4557–4568, 2012. [13].C. T. Lin, C. H. Yeh, M. H. Chen, S. H. Hsu, C. I. Wu, and T. W. Pi, “Influences of evaporation temperature on electronic structures and electrical properties of molybdenum oxide in organic light emitting devices,” J. Appl. Phys., vol. 107, no. 5, pp. 1–4, 2010. [14].B. Dasgupta, W. P. Goh, Z. E. Ooi, L. M. Wong, C. Y. Jiang, Y. Ren, E. S. Tok, J. Pan, J. Zhang, and S. Y. Chiam, “Enhanced extraction rates through gap states of molybdenum oxide anode buffer,” J. Phys. Chem. C, vol. 117, no. 18, pp. 9206–9211, 2013. [15].P. S. Wang, Y. Y. Lo, W. H. Tseng, M. H. Chen, and C. I. Wu, “Enhancing the incorporation compatibility of molybdenum oxides in organic light emitting diodes with gap state formations,” J. Appl. Phys., vol. 114, no. 6, 2013. [16].M. Vasilopoulou, A. M. Douvas, D. G. Georgiadou, L. C. Palilis, S. Kennou, L. Sygellou, A. Soultati, I. Kostis, G. Papadimitropoulos, D. Davazoglou, and P. Argitis, “The influence of hydrogenation and oxygen vacancies on molybdenum oxides work function and gap states for application in organic optoelectronics,” J. Am. Chem. Soc., vol. 134, no. 39, pp. 16178–16187, 2012. [17].F. K. Chang, Y. C. Huang, J. S. Jeng, and J. S. Chen, “Band offset of vanadium-doped molybdenum oxide hole transport layer in organic photovoltaics,” Solid. State. Electron., vol. 122, pp. 18–22, 2016. [18].P. Schulz, S. R. Cowan, Z. L. Guan, A. Garcia, D. C. Olson, and A. Kahn, “NiOX/MoO3 Bi-layers as efficient hole extraction contacts in organic solar cells,” Adv. Funct. Mater., vol. 24, no. 5, pp. 701–706, 2014. [19].W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W. T. Hammond, and J. Xue, “Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode,” Org. Electron., vol. 13, no. 11, pp. 2221–2228, 2012. [20].Y. D. Kim, S. Park, J. Song, S. J. Tark, M. G. Kang, S. Kwon, S. Yoon, and D. Kim, “Surface passivation of crystalline silicon wafer via hydrogen plasma pre-treatment for solar cells,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 1, pp. 73–76, 2011. [21].I. Martıin, M. Vetter, A. Orpella, C. Voz, J. Puigdollers, R. Alcubilla, A. V. Kharchenko, and P. Cabarrocas, “Improvement of crystalline silicon surface passivation by hydrogen plasma treatment,” Appl. Phys. Lett, vol. 1474, no. 2004, pp. 15–18, 2013. [22].S. J. Lee, S. H. Kim, D.W. Kim, K. H. Kim, B. K. Kim, and J. Jang, “Effect of hydrogen plasma passivation on performance of HIT solar cells,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 1, pp. 81–83, 2011. [23].T. Hsu, B. Anthony, R. Qian, J. Irby, S. K Banerjee, A. Tasch, S. Lin, H. Marcus, and C. Magee, “Cleaning and passivation of the Si (100) surface by low temperature remote hydrogen plasma treatment for Si epitaxy,” J. Electron. Mater., vol. 20, no. 3, pp. 279–287, 1991. [24].J. W. Lin, C. H. Wu, S. W. Wu, W. P. Hseih, C. H. Du, and T. S. Chao, “Enhancement of open-circuit voltage using CF4 plasma treatment on nitric acid oxides,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 665–667, 2013. [25].T. Suni, K. Henttinen, I. Suni, and J. Makinen, “Effects of plasma activation on hydrophilic bonding of Si and SiO,” J. Electrochem. Soc., vol. 149, no. 6, p. G348, 2002. [26].P. S. Wang, I. W. Wu, W. H. Tseng, M. H. Chen, and C. I. Wu, “Enhancement of current injection in organic light emitting diodes with sputter treated molybdenum oxides as hole injection layers,” Appl. Phys. Lett., vol. 98, no. 17, pp. 7–9, 2011. [27].Y. Kim, B. J. Yoo, R. Vittal, Y. Lee, N. G. Park, and K. J. Kim, “Low-temperature oxygen plasma treatment of TiO2 film for enhanced performance of dye-sensitized solar cells,” J. Power Sources, vol. 175, no. 2, pp. 914–919, 2008. [28].P. Cao, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, B. Yao, B. H. Li, Y. Bai, and X. W. Fan., “Optical and electrical properties of p-type ZnO fabricated by NH3 plasma post-treated ZnO thin films,” Appl. Surf. Sci., vol. 254, no. 9, pp. 2900–2904, 2008. [29].P. F. Cai, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G. Yin, and N. F. Chen., “Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment,” J. Appl. Phys., vol. 105, no. 8, 2009. [30].C. Wang, J. R. Chen, and R. Li, “Studies on surface modification of poly (tetrafluoroethylene) film by remote and direct Ar plasma,” Appl. Surf. Sci., vol. 254, no. 9, pp. 2882–2888, 2008. [31].D. Ahiboz, H. Nasser, and R. Turan, “Admittance analysis of thermally evaporated-hole selective MoO3 on crystalline silicon,” Proc. Int. Renew. Sustain. Energy Conf. IRSEC, pp. 144–151, 2017.
|