跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昌峻
研究生(外文):LI,CHANG-CHUN
論文名稱:熱塑性奈米碳材料複合膜製程與機械性質研究
論文名稱(外文):Processing and Mechanical Properties of Thermoplastic Composites Composed of Nano-Carbon Materials
指導教授:郭文雄郭文雄引用關係
指導教授(外文):KUO,WEN-HSIUNG
口試委員:郭文雄邱俊明陳昱昇
口試委員(外文):KUO,WEN-HSIUNGCHIU,CHUN-MINGCHEN,YU-SHENG
口試日期:2018-06-29
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:104
中文關鍵詞:奈米碳管紙氣相成長碳纖維聚酰胺聚丙烯磺酸化熱塑性複合材料拉伸測試
外文關鍵詞:CNT filmVGCFpolyamidepolypropylenesulfonationTP compositetensile tests
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管(Carbon Nanotubes,CNT)有著優異的機械性質與電熱性質是一種極具潛力的材料,但因為受限於奈米尺寸與團聚性等問題一直無法有效在應用實際面,直到奈米碳管紙的研發成功的將奈米碳管於宏觀中使用,奈米碳管紙也稱巴克紙(Buckypaper),主要是靠碳管間彼此的凡德瓦爾力互相堆疊製作而成的二維平面結構,具有相當的結合性與撓曲性。本實驗利用表面為多孔結構的塑膠濾膜使用真空抽濾法進行沉澱不同配比的奈米碳管(CNT)與氣相成長碳纖維(VGCF)製成奈米碳管薄膜和複合膜,並配合熱壓機進行熱壓含浸,製作成具強度、抗撓曲熱塑性複合材料。實驗控制參數有兩種: 第一為奈米碳管與氣相成長碳纖維之配比,二為:不同種類的熱塑性樹脂,依照以上條件製成試片並記錄式片參數,並以平均值標準差統計方式作為試片挑選標準,淘汰不符標準之試片後進行物性測試並利用冷場發射式電子顯微鏡進行破斷面的觀察並與實驗數據參照比對。拉伸測試之後可發現基材中聚酰胺(PA)有較好的介面,在抗拉強度與楊氏模數都有較好的表現,磺酸化程度高之聚丙烯(PP)有會有較好的力學性質,VGCF的尺規大較能有效率發揮拉伸能力因此複合膜的抗拉強度較強,經過電子顯微鏡可以觀察出纖維與基材受力後的分布狀況以及空孔裂紋的生成模式。
Carbon nanotubes (CNT) possess excellent mechanical, electric, and thermal behavior and are considered as a potential material. However, due to their sizes, CNTs tends to be entangled. This problem hinders wider applications of CNT materials. One possible solution is the use of CNT films, also known as Buckypaper. The CNT film is made based on the entangling of CNTs in a 2D plane. This film is self-standing, easy to handle, and flexible. In this research, we used a porous thermoplastic (TP) film for filtrating nanofibers, including CNTs and VGCFs, with a fixed ratio. The TP film with the deposited nano-fibers is then subjected to hot pressing and consolidation, leading to a nano-fiber/TP composite. This film like composite is flexible. There are two parameters to study: the first is the CNT/VGCF ratio, the second is different TP films. By varying these two, TP composites were made and the tensile properties are tested. After the tests, the fractured sections of the specimens were examined by FE-SEM. According to the tensile testing, the PA-based matrix composite provides the best interface bonding. The tensile strength and modulus are higher. The sulfated PP composite provides better properties. Using longer VGCFs also results in better load transferring and a higher tensile strength. The SEM pictures reveal distribution of the nano-fibers and voids within the matrix.

誌謝 I
摘要 II
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究方法 4
第二章 文獻探討 5
2.1 奈米碳材料 5
2.1.1 奈米碳管介紹 8
2.1.2 氣相成長碳纖維介紹 14
2.2 奈米碳管紙 17
2.2.1 奈米碳管紙(Buckypaper)簡介 17
2.2.2 奈米碳管紙製備 19
第三章 實驗方法 23
3.1 實驗流程 23
3.2 實驗材料 24
3.3 實驗設備 24
3.4 試片參數及編號 25
3.5 試片製備 27
3.5.1 奈米碳膜之製備 27
3.5.2 熱塑性複合材料之製備 28
3.6 實驗測試 29
3.7 冷場發射掃描式電子顯微鏡及能量散佈光譜儀(FE-SEM) 32
第四章 結果與討論 36
4.1 試片分析 36
4.1.1 奈米碳管紙外觀分析 36
4.1.2 熱塑性複合材料與試片外觀分析 38
4.1.3 試片參數比較 44
4.2 實驗分析 46
4.2.1 TP系列試片之拉伸測試結果 47
4.2.2 A系列試片之拉伸測試結果 53
4.2.3 B系列試片之拉伸測試結果 58
4.2.4 C系列試片之拉伸測試結果 63
4.3 拉伸測試結果綜合分析 68
4.4 電子顯微鏡 76
4.4.1 基材之觀察結果 82
4.4.2 熱塑性奈米碳管紙之觀測結果 84
4.2.3 熱塑性複合紙之觀測結果 92
第五章 結論 99
參考文獻 101
[1]Kenneth B. K. Teo, Charanjeet Singh, Manish Chhowalla, and William I. Milne, Encyclopedia of Nanoscience and Nanotechnology, (2003) p.1-2, “Catalytic Synthesis of Carbon Nanotubes and Nanofibers”.
[2]Ding W., Pengcheng S., Changhong L., et al.,“ Highly oriented carbon nanotube papers made of aligned carbon nanotubes,” Nanotechnology, 19,1-6 (2008).
[3]Chung D.DL., Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials. Carbon,39(8),1199-1125 (2001).
[4]呂欣芳, “膨脹石墨上成長奈米碳管機制及其熱性質與破壞行為之探討,” 逢甲大學博士論文,(2010)
[5]Delzeit, L., McAninch, I., Cruden, B. Hash, A., D., Chen, B., Han, J., and Meyyappan, M., J. Appl. Phys., 91,6027 (2002).
[6]S.Iijima, “Helical Microtubules of graphitic carbon,” Nature, 354, pp.56-68 (1991).
[7]許明發,郭文雄, “奈米碳管科技,”新竹,黎民書局, (2003).
[8]Vidu R., Masoud R., Morteza M., et al., “Nanostructures: a platform for brain repair and augmentation,” Frontiers, pp. 3 (2014).
[9]http://education.mrsec.wisc.edu/143.htm , “Carbon Nanotubes & Buckyballs,” MRSEC Education Group,
[10]李峰, “有機催化解法製被單壁奈米碳管及其物理性能,” 瀋陽國家科學院金屬研究所,(2001).
[11]Zhou O, Fleming RM, Murphy DW, et al, Science. 1994, 263,1744.
[12]Belle Dumé, “Scientists delve deeper into carbon nanotubes,” physicsworld.com,Feb 19, (2013)
[13]Ebbesen T. W., “Carbon nanotube: preparation and properties,” Boca Raton : CRC Press ,(1997).
[14]Amelinckx S, Bernaerts D, Zhang XB, et al. Science. 1994, 265: 635
[15]Charlier JC, Michebaud JP,Phys Rev Lett. 1993, 70: 1858
[16]G. Collins and P. Avouris, "Nanotubes for electronics", Scientific American, 38-45 (2000).
[17]林冠男,林鴻明 “奈米碳管之發展與應用趨勢,”真空科技, 19(1), pp.26-33(2006).
[18]成會明,奈米碳管,五南圖書出版股份有限公司, (2004).
[19]Rodriguez NM. J Mater Res. 1993, 8: 3233.
[20]Lieberman ML, Hills CR, Miglionico CJ. Carbon. 1971, 19: 633.
[21]Bradley JR, Chen YL, Sturner HW. Carbon. 1985, 23: 715.
[22]Kim MS, Rodriguez NM, Baker RTK. J Catal. 1991, 131: 60
[23]Chambers A, Rodriguez NM, Baker RTK. J Mater Res. 1996, 11:430.
[24]Motojima S, Kawaguchi M, Nozaki K. Carbon. 1991, 29:379.
[25]Motojima S, Asakura S, Kasemura T, et al. Carbon. 1995, 34: 289. 
[26]Rodriguez, N. M., Chambers, A., and Baker, R. T. K., Langmuir, 11 3862(1995).
[27]陳紅燕, “氣相生長納米碳纖維的製備及納米碳纖維增強環樹脂性能的研究,” 武漢理工大學碩士論文,(2005).
[28]M. C. Anderson, “Buckypaper:Whatever Happenes to The Aerospace Material of Tomorrow? ,”Aerospace Materials, pp. 89-98 (2013).
[29]黃柏元, “奈米碳管紙熱塑性複合材料製程與機械性質研究,” 逢甲大學碩士論文,(2015)
[30]Wang D., Song P., Liu C., et al. , “Highly oriented carbon nanotube papers made of aligned carbon nanotubes , ” Nanotechnology, 19, pp. 075609-075614(2008).
[31]Jianwei Zhang , Dazhi Jiang , Hua-Xin Peng , “A pressurized filtration technique for fabricating carbon nanotube buckypaper: Structure, mechanical and conductive properties,” Microporous and Mesoporous Materials, 184, pp. 127–133 (2014).
[32]Ma W., Song L., Yang R., Zhang T., et al., “Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films,” Nano Lett., 7, pp. 2307-2311 (2007).
[33]Ugarte T.,“Development of Continuous Manufacturing Process for Magnetically Aligned and Random Nanotube Buckypaper,”Florida State University Libraries, pp.21(2007). 
[34]Wang D., Song P., Liu C., et al., “Highly oriented carbon nanotube papers made of aligned carbon nanotubes,” Nanotechnology, 19, pp. 1-6 (2008).
[35]Bradford P.D., Wang X., et al., “A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes,”Elsevier Composites Science and Technology, 70, pp.1980-1985(2010).
[36]Zhang J., Jiang D., “Influence of geometries of multi-walled carbon nanotubes on the pore structures of Buckypaper,” Compos. Part A, 43, pp. 469-474 (2011).
[37]Wu Z., Chen Z., Du X., et al., “Transparent, conductive carbon nanotube films,” Science, 305, pp. 1273-1276 (2004).
[38]Endo M., Muramatsu H., Hayashi T., et al., “Nanotechnology: 'Buckypaper' from coaxial nanotubes,” Nature, 433 (2005).
[39]Kumar N.A., Jeon I.Y., Sohn G.J., et al., “Highly conducting and flexible few-walled carbon nanotube thin film,” ACS Nano, 5, pp. 2324-2331 (2011).
[40]Memon M.O., Haillot S., Lafdi K., “Carbon nanofiber based buckypaper used as a thermal interface material,” Carbon, 49, pp. 3820–3828 (2011).
[41]Zhang J., Jiang D., “Interconnected multi-walled carbon nanotubes reinforced polymer-matrix composites,” Compos. Sci. Technol., 71, pp. 466–470 (2011)
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top