|
參考書目 [1]W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, Journal of Applied Physics, vol. 32, pp. 510-519, 1961. [2]Q. Guo, H. W. Hillhouse, and R. Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells, Journal of the American Chemical Society, vol. 131, pp. 11672-11673, 2009/08/26 2009. [3]C. Czeslik, H. Seemann, and R. Winter, Basiswissen Physikalische Chemie: Springer, 2010. [4]M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, and D. B. Mitzi, Optical designs that improve the efficiency of Cu 2 ZnSn (S, Se) 4 solar cells, Energy & Environmental Science, vol. 7, pp. 1029-1036, 2014. [5]S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and ${ext{I-III-VI}}_{2}$ compounds, Physical Review B, vol. 79, p. 165211, 04/30/ 2009. [6]S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4, Applied Physics Letters, vol. 96, p. 021902, 2010. [7]A. Walsh, S. Chen, S.-H. Wei, and X.-G. Gong, Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4, Advanced Energy Materials, vol. 2, pp. 400-409, 2012. [8]S. Chen, A. Walsh, X.-G. Gong, and S.-H. Wei, Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers, Advanced Materials, vol. 25, pp. 1522-1539, 2013. [9]Z. Tang, Y. Nukui, K. Kosaka, N. Ashida, H. Uegaki, and T. Minemoto, Reduction of secondary phases in Cu2SnSe3 absorbers for solar cell application, Journal of Alloys and Compounds, vol. 608, pp. 213-219, 2014/09/25/ 2014. [10]T. Tanaka, T. Sueishi, K. Saito, Q. Guo, M. Nishio, K. M. Yu, et al., Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films, Journal of Applied Physics, vol. 111, p. 053522, 2012. [11]A. Guchhait, Z. Su, Y. F. Tay, S. Shukla, W. Li, S. W. Leow, et al., Enhancement of Open-Circuit Voltage of Solution-Processed Cu2ZnSnS4 Solar Cells with 7.2% Efficiency by Incorporation of Silver, ACS Energy Letters, vol. 1, pp. 1256-1261, 2016/12/09 2016. [12]S. Temgoua, R. Bodeux, N. Naghavi, and S. Delbos, Effects of SnSe2 secondary phases on the efficiency of Cu2ZnSn(Sx,Se1 − x)4 based solar cells, Thin Solid Films, vol. 582, pp. 215-219, 5/1/ 2015. [13]A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Placidi, D. Sylla, M. Espindola-Rodriguez, et al., Secondary phase formation in Zn-rich Cu2ZnSnSe4-based solar cells annealed in low pressure and temperature conditions, Progress in Photovoltaics: Research and Applications, vol. 22, pp. 479-487, 2014. [14]W.-C. Hsu, I. Repins, C. Beall, C. DeHart, G. Teeter, B. To, et al., The effect of Zn excess on kesterite solar cells, Solar Energy Materials and Solar Cells, vol. 113, pp. 160-164, 6// 2013. [15]J. T. Wätjen, J. Engman, M. Edoff, and C. Platzer-Björkman, Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells, Applied Physics Letters, vol. 100, p. 173510, 2012. [16]J. J. Scragg, Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors, Doctor of Philosophy (PhD), University of Bath, 2010. [17]I. D. Olekseyuk, I. V. Dudchak, and L. V. Piskach, Phase equilibria in the Cu2S–ZnS–SnS2 system, Journal of Alloys and Compounds, vol. 368, pp. 135-143, 4/14/ 2004. [18]H. Katagiri, K. Jimbo, K. Moriya, and K. Tsuchida, Solar cell without environmental pollution by using CZTS thin film, in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, pp. 2874-2879. [19]C. M. Sutter-Fella, J. A. Stückelberger, H. Hagendorfer, F. La Mattina, L. Kranz, S. Nishiwaki, et al., Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn (S, Se) 4 thin film solar cells, Chemistry of Materials, vol. 26, pp. 1420-1425, 2014. [20]Y. Yang, X. Kang, L. Huang, S. Wei, and D. Pan, Facile and Low-Cost Sodium-Doping Method for High-Efficiency Cu2ZnSnSe4 Thin Film Solar Cells, The Journal of Physical Chemistry C, vol. 119, pp. 22797-22802, 2015/10/08 2015. [21]H. Xin, S. M. Vorpahl, A. D. Collord, I. L. Braly, A. R. Uhl, B. W. Krueger, et al., Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency, Physical Chemistry Chemical Physics, vol. 17, pp. 23859-23866, 2015. [22]Y.-T. Hsieh, Q. Han, C. Jiang, T.-B. Song, H. Chen, L. Meng, et al., Efficiency Enhancement of Cu2ZnSn(S,Se)4 Solar Cells via Alkali Metals Doping, Advanced Energy Materials, vol. 6, pp. 1502386-n/a, 2016. [23]P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, et al., New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%, Prog Photovolt: Res Appl, vol. 19, 2011. [24]S. C. Riha, B. A. Parkinson, and A. L. Prieto, Compositionally Tunable Cu2ZnSn(S1–xSex)4 Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin Films, Journal of the American Chemical Society, vol. 133, pp. 15272-15275, 2011/10/05 2011. [25]K. Ito and T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films, Japanese Journal of Applied Physics, vol. 27, p. 2094, 1988. [26]H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E B evaporated precursors, Solar Energy Materials and Solar Cells, vol. 49, pp. 407-414, 1997. [27]T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, and H. Schock, Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films, in 14th European PVSEC, 1997. [28]J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, and K.-H. Kim, Electrical and optical properties of Cu 2 ZnSnS 4 thin films prepared by rf magnetron sputtering process, Solar Energy Materials and Solar Cells, vol. 75, pp. 155-162, 2003. [29]K. Tanaka, N. Moritake, and H. Uchiki, Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors, Solar Energy Materials and Solar Cells, vol. 91, pp. 1199-1201, 2007. [30]K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, Chemical composition dependence of morphological and optical properties of Cu 2 ZnSnS 4 thin films deposited by sol–gel sulfurization and Cu 2 ZnSnS 4 thin film solar cell efficiency, Solar Energy Materials and Solar Cells, vol. 95, pp. 838-842, 2011. [31]K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing, Solar Energy Materials and Solar Cells, vol. 93, pp. 583-587, 2009. [32]K. Moriya, K. Tanaka, and H. Uchiki, Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition, Japanese Journal of Applied Physics, vol. 46, p. 5780, 2007. [33]J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material, physica status solidi (b), vol. 245, pp. 1772-1778, 2008. [34]H. Katagiri, Survey of development of CZTS-based thin film solar cells, in Photonics (ICP), 2012 IEEE 3rd International Conference on, 2012, pp. 345-349. [35]G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, Cu2ZnSnSe4 thin film solar cells produced by selenization of magnetron sputtered precursors, Prog Photovolt: Res Appl, vol. 17, 2009. [36]T. Kato, H. Hiroi, N. Sakai, and H. Sugimoto, Buffer/absorber interface study on Cu2ZnSnS4 and Cu2ZnSnSe4 based solar cells: band alignment and its impact on the solar cell performance, in 28th European Photovoltaic Solar Energy Conference, 2013, pp. 2125-2127. [37]Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus, et al., Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length, Advanced Energy Materials, vol. 5, pp. 1401372-n/a, 2015. [38]W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, et al., Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency, Advanced Energy Materials, vol. 4, pp. 1301465-n/a, 2014. [39]S. Oueslati, G. Brammertz, M. Buffiere, H. ElAnzeery, O. Touayar, C. Köble, et al., Physical and electrical characterization of high-performance Cu 2 ZnSnSe 4 based thin film solar cells, Thin Solid Films, vol. 582, pp. 224-228, 2015. [40]P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films, Thin Solid Films, vol. 517, pp. 2519-2523, 2009/02/02/ 2009. [41]A. Fairbrother, E. García-Hemme, V. Izquierdo-Roca, X. Fontané, F. A. Pulgarín-Agudelo, O. Vigil-Galán, et al., Development of a Selective Chemical Etch To Improve the Conversion Efficiency of Zn-Rich Cu2ZnSnS4 Solar Cells, Journal of the American Chemical Society, vol. 134, pp. 8018-8021, 2012/05/16 2012. [42]M. Noritaka, H. Myo Than, S. Kazuki, I. Shota, H. Yoshio, and I. Kentaro, Cu 2 ZnSn(S x Se 1- x ) 4 Thin-Film Solar Cells Utilizing Simultaneous Reaction of a Metallic Precursor with Elemental Sulfur and Selenium Vapor Sources, Applied Physics Express, vol. 5, p. 081201, 2012. [43]A.-J. Cheng, M. Manno, A. Khare, C. Leighton, S. A. Campbell, and E. S. Aydil, Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, p. 051203, 2011. [44]L. Vauche, L. Risch, M. Arasimowicz, Y. Sánchez, E. Saucedo, M. Pasquinelli, et al., Detrimental effect of Sn-rich secondary phases on Cu2ZnSnSe4 based solar cells, Journal of Renewable and Sustainable Energy, vol. 8, p. 033502, 2016. [45]S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, et al., Determination of band gap energy (E g) of Cu 2 ZnSnSe 4 thin films: on the discrepancies of reported band gap values, Applied Physics Letters, vol. 97, p. 021905, 2010.
|