跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:萬齊洋
研究生(外文):WAN, CHI-YANG
論文名稱:異型結構奈米石墨薄片應用於電磁波吸收之研究
論文名稱(外文):Electromagnetic Wave Absorption Using Morphology-Altered Exfoliated Graphite Nanoplatelets
指導教授:劉益銘
指導教授(外文):Liu, Yih-Ming
口試委員:劉益銘葛明德蒲念文游孟潔龔彥彰
口試委員(外文):Liu, Yih-MingGer, Ming-DerPu, Nen-WenYouh, Meng-JeyGong, Yan-Jhang
口試日期:2019-07-26
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:104
中文關鍵詞:異形結構奈米石墨薄片石墨烯電磁波吸波材料
外文關鍵詞:morphology-alteredexfoliated graphite nanoplateletgrapheneelectromagnetic wave absorption.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
近年來通訊技術發展迅速,電磁波干擾問題日趨嚴重,而在國防工業上,電磁脈衝防護的能力以及雷達波吸收的匿蹤隱形技術更是日形重要,研究及開發高性能吸波材料已成為各國國防上互相競爭的一大課題。雷達匿蹤及電磁脈衝屏蔽材料主要的訴求就是重量輕、厚度薄、作用頻率寬、吸收能力強,而近年來的研究發現,在奈米碳材料中,因石墨烯質量輕且厚度薄,更具有高比表面積的特性,極為適合作為吸收劑使用,本論文作者團隊以往在以石墨烯作為微波吸收劑之研究亦發現團隊自製之多孔石墨烯在添加量1 wt.%時具有良好的吸波能力,但由於材料本身高比表面積特性,頻寬控制不易。而且石墨烯之價格昂貴,應用於大面積之吸收漆料成本極高,因此本論文嘗試使用價格低廉、層數較厚的奈米石墨薄片(xGnP)來代替石墨烯,希望能降低吸波材之成本,並達到良好之吸波效果。
本研究主要分為兩個部分。第一部分為藉由後製程對奈米石墨薄片進行表面型態的變化,希望藉由改變xGnP的幾何形狀,而產生額外的電磁波吸收機制,同時增加比表面積來提升其介面極化效應。研究中分別利用高溫KOH腐蝕、高溫KNO3腐蝕以及在xGnP上成長奈米碳管(CNT)等方式製作三種異型結構奈米石墨薄片(KOHxGnP、KNO3xGnP、CNTxGnP),並探討形貌變化對材料特性及吸波性能的影響。研究結果顯示,在10 wt.%添加量與1 mm膠片厚度之測試條件下,KOHxGnP之表面型態呈現略微被侵蝕狀,其測得之反射損失在14.99 GHz可達到-27.04 dB之最大值。而KNO3xGnP之表面被腐蝕出不規則孔洞,其測得之反射損失在17.09 GHz可達到-19.23 dB之最大值。CNTxGnP之表面形貌為類似毛氈狀形貌,其測得之反射損失在14.24 GHz可達到-21.85 dB之最大值。由實驗結果可見,改變原xGnP之形貌會使其最大反射損失往高頻位移,而由上述各材料之吸波特性分析比較,推論片徑尺寸為改變吸波頻帶之主要因素。
第二部分則是藉由比較片徑極小之市售石墨烯(UC)與利用超音震盪方式改變xGnP片徑大小,並測試與比較其吸波特性來驗證前節之推論。在10 wt.%添加量與1 mm膠片厚度之測試條件下,UC於1 mm膠片厚度實測時幾無吸波效果,而震盪時間0.5 hr之xGnP,其測得之反射損失在14.84 GHz可達到-21.23 dB之最大值;震盪時間1 hr之xGnP,其測得之反射損失在15.89 GHz可達到-38.76 dB之最大值;震盪時間3 hr之xGnP,其測得之反射損失在17.99 GHz時可達到-21.94 dB之最大值,此結果證實xGnP可透過改變其片徑尺寸來控制其所作用之頻帶範圍。

In recent years, communication technology has developed rapidly, and electromagnetic interference has become more and more serious. Meanwhile, in the defense industry, the ability of electromagnetic pulse protection and the stealth technology of radar wave absorption are also more and more important. Research and development of high-performance wave absorbing materials have become a major issue in competition for national defense between countries. The main requirements of radar stealth and electromagnetic pulse shielding materials are light weight, thin thickness, wide band of frequency and good absorption capacity. Recent studies have found that, in nano carbon materials, graphene is light in weight and thin in thickness. It also has high specific surface area and is very suitable for use as an absorbent for microwaves. The author's team used to use graphene as a microwave absorber and found that the team-made holy graphene has good wave -absorbing capability even when the added amount is as low as 1 wt%. However, due to the high specific surface area of the holy graphene itself, the bandwidth of absorber is not easy to be controlled. Moreover, the price of graphene is expensive, and the cost of such absorbing paint applied to a large area is extremely high. Therefore, this thesis attempts to replace graphene with low-cost, thick-layer nano graphite sheets (xGnP), hoping to reduce the cost of absorbing materials and achieve good absorbing effect.
This thesis is mainly divided into two parts. The first part is to change the surface morphology of xGnPs by post-process. It is hoped that by changing the geometry of xGnPs, an additional electromagnetic wave absorption mechanism is generated, and the specific surface area is increased to enhance the interface polarization effect. In the thesis, three kinds of morphology-altered graphite nano platelets (KOHxGnP, KNO3xGnP, CNTxGnP) were fabricated by high temperature KOH corrosion, high temperature KNO3 corrosion and the growth of carbon nanotubes (CNT) on xGnPs. The effect of morphology changes on their wave absorbing properties was investigated. The results show that, under the test conditions of 10 wt% adding amount and 1 mm film thickness, the surface morphology of KOHxGnP was slightly eroded, and the measured reflection loss reached a maximum of -27.04 dB at 14.99 GHz. The surface of KNO3xGnP is corroded to form irregular holes, and the measured reflection loss reached a maximum value of -19.23 dB at 17.09 GHz. The morphology of CNTxGnP was similar to a felt-like structure, and the measured reflection loss reached a maximum of -21.85 dB at 14.24 GHz. It can be seen from the experimental results that changing the morphology of the original xGnP will cause its maximum reflection loss to shift to the high frequency. From the analysis of the absorbing characteristics of the above materials, it is inferred that the flake size of xGnP is the main factor for changing the absorbing band.
The second part of this thesis is to verify the inference of the previous section by comparing the absorbing properties of a commercially available graphene (UC) with a very small diameter and xGnPs with different flake size changed by means of different supersonic oscillation period. Under the test conditions of 10 wt% adding amount and 1 mm film thickness, UC has no absorbing effect in the range of 2 to 18 GHz. For the xGnPs with an oscillating time of 0.5 hr., the measured reflection loss can reach a maximum of -21.23 dB at 14.84 GHz. The reflected loss of xGnP with an oscillating time of 1 hr. can reach a maximum of -38.76 dB at 15.89 GHz. And for the xGnPs with an oscillating time of 3 hr., the measured reflection loss can reach a maximum value of -21.94 dB at 17.99 GHz. This result confirms that we can control the acting frequency band of the xGnP absorber by changing its flake size.

誌謝 ii
摘要 iii
Abstract v
目錄 vii
表目錄 ix
圖目錄 x
1. 緒論 1
1.1. 前言 1
1.2. 研究動機及目的 2
2. 文獻回顧與理論基礎 4
2.1. 電磁波吸波原理 4
2.1.1. 電磁波吸波材料損耗機制 8
2.1.2. 電滋波吸收模擬公式推算 9
2.2. 不同碳材對於吸波效能之比較文獻回顧 12
2.2.1. 奈米剝落石墨薄片之文獻回顧 15
2.2.2. 石墨烯簡介 16
2.2.3. 異型石墨烯應用於吸波之文獻回顧 19
3. 實驗方法 24
3.1. 實驗步驟 24
3.1.1. 實驗架構 24
3.1.2. 奈米石墨薄片製備方法 25
3.1.3. 異型結構奈米石墨薄片製備方法 26
3.1.4. 膠片製作流程 27
3.2. 實驗檢測方法 32
3.2.1. 反射損失及電磁參數量測方法 32
3.3. 實驗藥品、設備及儀器 34
3.3.1. 實驗藥品 34
3.3.2. 實驗設備及儀器 34
4. 結果與討論 36
4.1. 異型結構奈米石墨薄片對吸波效能之影響 36
4.1.1. 奈米石墨薄片之材料特性與吸波性能 36
4.1.2. KOH侵蝕奈米石墨薄片之材料特性與吸波性能 43
4.1.3. KNO3侵蝕奈米石墨薄片之材料特性與吸波性能 50
4.1.4. 奈米石墨薄片複合奈米碳管之材料特性與吸波性能 57
4.1.5. 小結 64
4.2. 片徑大小對奈米石墨薄片吸波效能之影響 65
4.2.1. 市售石墨烯粉體之材料特性與吸波性能 65
4.2.2. 不同片徑大小奈米石墨薄片之材料特性與吸波性能 71
5. 結論 82
未來展望 84
參考文獻 85
[1]陳柏宏,電磁干擾與防止對策,文笙書局,台北,第56-78頁,1996。
[2]王彙中,馬振基,“EMI/RFI遮蔽用導電性高分子複合材料”,塑膠資訊,第33期,第1-14頁,1999。
[3]華雲貴,“電磁脈衝防護作為之探討”,海軍學術雙月刊,第46卷,第2期,第133-146頁,2012。
[4]啟元,“傳聞中的殺手鐧武器打破電磁脈衝的迷思”,全球防衛雜誌,第254期,第44-51頁,2005。
[5]邱宗賢,李樹強,許金騰,“隱形科技軍事用途之研究”,海軍軍官,第19卷,第3期,第57-67頁,2000。
[6]郭佳憲,李貴琪,“高科技的隱形術”,科學發展,第379期,第36-41頁,2004。
[7]王海,“雷達吸波材料的研究現狀和發展方向”,上海航天,第1期,第55-59頁,1999。
[8]王國光,〝陶鐵磁體微波吸收材質之量測與匹配〞,新新雙月刊,第21卷,第4期,第40-45頁,1993。
[9]林諭男,〝陶鐵磁體系列磁性材料簡介〞,新新雙月刊,第14卷,第4期,第226-236頁,1986。
[10]http://zh.wikipedia.org/wiki/%E7%94%B5%E7%A3%81%E6%B3%A2 (2015.6.3)
[11] http://imagine.gsfc.nasa.gov/science/toolbox/emspectrum1.html (2015.6.3)
[12] http://imagine.gsfc.nasa.gov/science/toolbox/spectrum_chart.html (2015.6.3)
[13] http://www.radioing.com/eengineer/bands.html (2015.6.3)
[14] 賴元泰,“電磁波吸收材質之研究”,碩士論文,中原大學,化學系,應用化學碩士班,桃園,第4-20頁,2002。
[15] 陳立航,“多孔洞石墨烯及其複合材料應用於電磁波吸收之研究”,碩士論文,國防大學理工學院,應用化學及材料科學系,應用化學碩士班,桃園,第39-51頁,2015。
[16] Jyoti Prasad Gogoi , Nidhi S. Bhattacharyya , K.C. James Raju, “Synthesis and microwave characterization of expanded graphite/novolac phenolic resin composite for microwave absorber applications”, Composites: Part B ,pp.1291-1297, 2011.
[17] 沈萬慈、劉英傑、曹乃真、溫詩鑄,膨脹石墨的微觀結構分析,炭素技術,第1-6頁,1996。
[18] Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner, “Honeycomb Carbon: a Review of Graphene,” Chem. Rev., Vol. 110, pp. 132-145, 2010.
[19] Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, Philip Kim, “Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene,” Nature, Vol. 438, pp. 201-204, 2005.
[20] Calizo, I., Bao, W., Miao, F., Lau, C.N., and Balandin, A. A., “Graphene-on-Sapphire and Graphene-on-Glass: Raman Spectroscopy Study,” Appl. Phys. Lett., Vol. 91, pp. 1-9, 2007.
[21] Geim, A. K., and Novoselov, K. S., “The Rise of Graphene,” Nature Materials, Vol. 6, pp. 183-191, 2007.
[22] Hyun-Jung Choi, Sun-Min Jung, Jeong-Min Seo, Dong Wook Chang, Liming Dai, Jong-Beom Baek, ” Graphene for Energy Conversion and Storage in Fuel Cells and Supercapacitors,” Nano Energy, Vol.1, pp. 534-551, 2012.
[23] Li, Xuesong, Zhu, Yanwu, Cai, Weiwei, Borysiak, Mark, Han, Boyang, Chen, David, Piner, Richard D., Colombo, Luigi, and Ruoff, Rodney, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Letter, Vol. 9, No. 12, pp. 4359-4363, 2009.
[24] Zhao, Jinping , Pei, Songfeng, Ren, Wencai, Gao, Libo, and Cheng, Hui-Ming, “Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films,” ACS Nano, Vol. 4, No. 9, pp. 5245-5252, 2010.
[25] Chen, C. M., Zhang, Q., Yang, M. G., Huang, C. H., Yang, Y. G., and Wang, M. Z., ”Structural Evolution during Annealing of Thermally Reduced Graphene Nanosheets for Application in Supercapacitors,” Carbon, Vol. 50, pp. 3724-3730, 2012.
[26] Zhan, Ying-qing, Meng, Fan-bin, Lei, Ya-jie, Zhao, Rui, Zhong, Jia-chun, and Liu, Xiao-bo, “One-Pot Solvothermal Synthesis of Sandwich-Like Graphene Nanosheets/Fe3O4 Hybrid Material and its Microwave Electromagnetic Properties,” Materials Letters, Vol. 65, pp. 1737-1740, 2011.
[27] Kong, Luo, Yin, Xiaowei, Zhang, Yajun, Yuan, Xiaoyan, Li, Quan, Ye, Fang, Cheng, Laifei, and Zhang, Litong, “Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide Modified by Maghemite Colloidal Nanoparticle Clusters,” J. Phys. Chem. C, Vol. 117, pp. 19701-19711, 2013.
[28] Ma, Erlong, Li, Jiajun, Zhao, Naiqin, Liu, Enzuo, He, Chunnian, and Shi, Chunsheng, “Preparation of Reduced Graphene Oxide/Fe3O4 Nanocomposite and Its Microwave Electromagnetic Properties,” Materials Letters, Vol. 91, pp. 209-212, 2013.
[29]Huai-Liang Xu, Hong Bi, Ruey-Bin Yang, “Enhanced Microwave Absorption Property of Bowl-Like Fe3O4 Hollow Spheres/Reduced Graphene Oxide Composites,” Journal of Applied Physics, Vol. 111, pp. 07A522-1-07A522-3, 2012
[30]Panbo Liu, Ying Huang, Lei Wang, Wei Zhang, “Synthesis and Excellent Electromagnetic Absorption Properties of Polypyrrole-Reduced Graphene Oxide-Co3O4 Nanocomposites,” Journal of Alloys and Compounds, Vol. 573, pp. 151-156, 2013.
[31] Lei Wang, Ying Huang, Xiao Ding, Panbo Liu, Meng Zong, Yan Wang, “Synthesis and Microwave Absorption Enhancement of Fe-Doped NiO@SiO2@Graphene Nanocomposites,” Materials Science and Engineering B, Vol. 178, Issue 20, pp. 1403-1409, 2013.
[32] Dong-Dong Zhang,Dong-Lin Zhao, Ji-Ming Zhang,Li-Zhong Bai, “Microwave Absorbing Property and Complex Permittivity and Permeability of Graphene-CdS Nanocomposite,” Journal of Alloys and Compounds, Vol. 589, pp. 378-383, 2014.
[33] Luo Kong, Xiaowei Yin, Xiaoyan Yuan, Yajun Zhang, Xingmin Liu, Laifei Cheng, Litong Zhang, “Electromagnetic Wave Absorption Properties of Graphene Modified with Carbon Nanotube/Poly(Dimethyl Siloxane) Composites,” Carbon, Vol. 73, pp. 185-193, 2014.
[34] D’Aloia, A. G., Marra, F., Tamburrano, A., Bellis, G. De, and Sarto, M. S., “Electromagnetic Absorbing Properties of Graphene–Polymer Composite Shields,” Carbon, Vol. 73, pp. 175-184, 2014.
[35] Chao Wang, Xijiang Han, Ping Xu, Xiaolin Zhang, Yunchen Du, Surong Hu, Jingyu Wang, and Xiaohong Wang, “The Electromagnetic Property of Chemically Reduced Grapheme Oxide and Its Application as Microwave Absorbing Material,” Applied Physic Letters, Vol. 98, pp. 072906-1-072906-3, 2011.
[36] Bhattacharya, Pallab, Das, Chapal Kumar, and Kalra, Swinderjeet Singh, “Graphene and MWCNT: Potential Candidate for Microwave Absorbing Materials,” Journal of Material Science Reserch, Vol. 1, No. 2, pp. 126-132, 2012.
[37] Bai, Xin, Zhai, Yinghao, and Zhang, Yong, “Green Approach to Prepare Graphene-Based Composites with High Microwave Absorption Capacity,” J. Phys. Chem. C, Vol. 115, pp. 11673-11677, 2011.
[38] Singh, Vivek K. , Shukla, Anuj, Patra, Manoj K., Saini, Lokesh, Jani, Raj K., Vadera, Sampat R., and Kumar, Narendra, “Microwave Absorbing Properties of a Thermally Reduced Graphene Oxide/Nitrile Butadiene Rubber Composite,” Carbon, Vol. 50, pp. 2202-2208, 2012.
[39] Liang, Jiajie, Wang, Yan, Huang, Yi, Ma, Yanfeng, Liu, Zunfeng, Cai, Jinming, Zhang, Chendong, Gao, Hongjun, and Chen, Yongsheng, “Electromagnetic Interference Shielding of Graphene/Epoxy Composites,” Carbon, Vol. 47, pp. 922-925, 2009.
[40] Hong, Seul-Ki, Kim, Ki-Yeong, Kim, Taek-Yong, Kim, Jong-Hoon, Park, Seong-Wook, Kim, Joung-Ho, and Cho, Byung-Jin, “Electromagnetic Interference Shielding Effectiveness of Monolayer Graphene,” Nanotechnology, Vol. 23, pp. 1-5, 2012.
[41] Eswaraiah, Varrla, Sankaranarayanan, Venkataraman, and Ramaprabhu, Sundara, “Functionalized Graphene–PVDF Foam Composites for EMI Shielding,” Macromol. Mater. Eng., Vol. 296, Issue 10, pp. 894-898, 2011
[42] Zhang, Hao-Bin, Yan, Qing, Zheng, Wen-Ge, He, Zhixian, and Yu, Zhong-Zhen, “Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces, Vol. 3, pp. 918-924, 2011,
[43] Ling, Jianqiang, Zhai, Wentao, Feng, Weiwei, Shen, Bin, Zhang, Jianfeng, and Zheng, Wenge, “Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces, Vol. 5, pp. 2677-2684, 2013
[44] Hsiao, Sheng-Tsung, Ma, Chen-Chi M. , Tien, Hsi-Wen, Liao, Wei-Hao, Wang, Yu-Sheng, Li, Shin-Ming, Huang, and Yu-Chin, “Using a Non-Covalent Modification to Prepare a High Electromagnetic Interference Shielding Performance Graphene Nanosheet/Water-Borne Polyurethane Composite,” Carbon, Vol. 60, pp. 57-66, 2013.
[45] Song, Wei-Li, Cao, Mao-Sheng, Lu, Ming-Ming, Bi, Song, Wang, Chan-Yuan, Liu, Jia, Yuan, Jie, and Fan, Li-Zhen, “Flexible Graphene/Polymer Composite Films in Sandwich Structures for Effective Electromagnetic Interference Shielding,” Carbon, Vol. 66, pp. 67-76, 2014.
[46] Wilson, Mark, “Electrons in Atomically Thin Carbon Sheets Behave like Massless Particles,” Physics Today, Vol. 59, Issue 1, No. 21, pp. 21-23, 2006.
[47] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jing, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A. , “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, Vol. 438, pp. 197-200, 2005.
[48] Forbeaux, I., Themlon, J.M., and Debever, J.M., “Heteroepitaxial Graphite on 6H–SiC(0001):Interface Formation through Conduction-Band Electronic Structure,” Physical Review B, Vol. 58, No. 24, pp. 16396-16406, 1998.
[49] Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud’homme, R. K., Car, R., Saville, D. A., and Aksay, I. A., “Functionalized Single Graphite Nanoplatelets Sheets Derived from Splitting Graphite Oxide, ” J. Phys. Chem. B, Vol. 110, No. 17, pp.8535-8539, 2006
[50] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y. , Nguyen, S. T., and Ruoff, R. S., “Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon ,Vol. 45, pp. 1558-1565, 2007
[51] Sun, C. L., Chang, C. T., Lee, H. H., Zhou, J., Wang, J., Sham, T. K., and Pong, W. F., ”Microwave-Assisted Synthesis of a Core-Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid,” ACSNano, Vol. 5, No. 10, pp. 7788-7795, 2011.
[52] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Özyilmaz, B., Ahn, J. H., Hong, B. H., and Iijima, S., ”Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes,” Nature Nanotechnology, Vol. 5, pp. 574-578, 2010.
[53] Alfonso Reina, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, Vladimir Bulovic, Mildred S. Dresselhaus, Jing Kong, ” Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition,” Nano Lett., Vol. 9, No. 1, pp. 30-35,2009.
[54] Jang, B. Z., and Zhamu, A., “Processing of Nanographene Platelets (NGPs) and NGP Nanocomposites: a review,” Journal of Materials Science, Vol. 43, Issue 15, pp. 5092-5101, 2008.
[55] Yunchen Du, Tao Liu, Bin Yu, Haibin Gao, Ping Xu, Jingyu Wang, Xiaohong Wang, Xijiang Han, “The electromagnetic properties and microwave absorption of mesoporous carbon,” Materials Chemistry and Physics, 135, pp.884-891, 2012.
[56] Wei-Li Song, Mao-Sheng Cao, Li-Zhen Fan, Ming-Ming Lu, Yong Li, Chan-Yuan Wang, Hong-Fei Ju, “Highly Ordered Porous Carbon/Wax Composites for Effective Electromagnetic Attenuation and Shielding,” Carbon, Vol. 77, pp. 130-142, 2014.
[57] Shoupu Zhu, Chitian Xing, Fan Wu, Xiaobo Zuo, Yingfei Zhang, Congcong Yu, Mingliang Chen, Weiwei Li, Qi Li, Liwei Liu, “Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding”,Carbon, Vol. 145, pp. 259-265, 2019.
[58] Guoxiang Xin, Yanhui Wang, Jianbing Zang, Shaopei Jia, Pengfei Tian, and Shuyu Zhou, “Temperature tuned carbon morphologies derived from flexible graphite sheets in KNO3 molten salt,” Carbon, Vol. 98, pp. 221-224, 2016.
[59] 洪偉哲,“抗紅外線/毫米波複合材料製備與特性研究”,碩士論文,國防大學理工學院,應用化學及材料科學系,應用化學碩士班,桃園,第15-20頁,2010。
[60] 藍志祥,“磁性膨脹石墨複合材料製備與干擾紅外線毫米波效能研究”,碩士論文,國防大學理工學院,化學及材料工程系,化學工程碩士班,桃園,第23-28頁,2014。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top