|
1. Incoloy A-286. Special Metals Corporation, 2008. 2. Rho, B.S., Hong, H.U. and Nam, S.W., Analysis of the intergranular cavitation of Nb-A286 alloy in high temperature low cycle fatigue using EBSD technique. Scripta Materialia, 2000. 43(2): p. 167-173. 3. Seifollahi, M., et al., The Mechanism of eta Phase Precipitation in A286 Superalloy During Heat Treatment. Journal of Materials Engineering and Performance, 2013. 22(10): p. 3063-3069. 4. OHTA Sadao, Honjo Takemitsu, A.K., and Motoda Takashi, Effect of manufacturing condition on high temperature properties of A-286 alloy. Tetsu- to- Hagane 1980. 66: p. S460. 5. Brooks, J., Effect of Alloy Modifications on HAZ Cracking of A-286 Stainless Steel. Welding journal, 1974: p. 517-523. 6. Muhmond, H.M. and Fredriksson, H., An Investigation on the Effect of S and Al on the Austenite Growth Morphology in Gray Cast Iron, Using Thermal Analysis and Etching Technique. Transactions of the Indian Institute of Metals, 2013. 66(2): p. 185-192. 7. Ma, P. and Zhu, J., Magnesium Distribution in a Nickel-Based Superalloy. Metallography, 1986. 19(1): p. 115-118. 8. Hughes, H., Precipitation in Alloy Steels Containing Chromium Nickel Aluminium and Titanium. Journal of the Iron and Steel Institute, 1965. 203: p. 1019-&;. 9. Tavakkoli, M.M. and Abbasi, S.M., Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy. Materials &; Design, 2013. 46: p. 573-578. 10. Wei, C.N., Bor, H.Y., and Chang, L., The influence of carbon addition on carbide characteristics and mechanical properties of CM-681LC superalloy using fine-grain process. Journal of Alloys and Compounds, 2011. 509(18): p. 5708-5714. 11. Qin, X.Z., et al., Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 485(1-2): p. 74-79. 12. Zhao, M.J., et al., Effect of boron on the microstructure, mechanical properties and hydrogen performance in a modified A286. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010. 527(21-22): p. 5844-5851. 13. Hong, H.U., et al., On the Role of Grain Boundary Serration in Simulated Weld Heat-Affected Zone Liquation of a Wrought Nickel-Based Superalloy. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2012. 43A(1): p. 173-181. 14. Cutler, E.R., Wasson, A.J. and Fuchs, G.E., Effect of minor alloying additions on the carbide morphology in a single crystal Ni-base superalloy. Scripta Materialia, 2008. 58(2): p. 146-149. 15. Rho, B.S., Kim, K.J., and Nam, S.W., The effect of hold time and waveform on the high-temperature, low-cycle fatigue properties of a Nb-A286 alloy. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2001. 32(10): p. 2539-2546. 16. Xie, X., et al., Investigation on high temperature strengthening and toughening of iron-base superalloy. JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2003. 10(1): p. 44-48. 17. Kobayashi, K., et al., High-temperature fatigue properties of austenitic superalloys 718, A286 and 304L. International Journal of Fatigue, 2008. 30(10-11): p. 1978-1984. 18. De Cicco, H., et al., Creep behavior of an A286 type stainless steel. Materials Characterization, 2005. 55(2): p. 97-105. 19. De Cicco, H., et al., Microstructural development and creep behavior in A286 superalloy. Materials Characterization, 2004. 52(2): p. 85-92. 20. Rho, B.S., Nam, S.W., and Xie, X., The effect of test temperature on the intergranular cracking of Nb-A286 alloy in low cycle fatigue. Journal of Materials Science, 2002. 37(1): p. 203-209. 21. Rho, B.S. and Nam, S.W., The effect of applied strain range on the fatigue cracking in Nb-A286 iron-base superalloy. Materials Letters, 2001. 48(1): p. 49-55. 22. Seifollahi, M., et al., Effect of eta Phase on Mechanical Properties of the Iron-based Superalloy Using Shear Punch Testing. Isij International, 2013. 53(2): p. 311-316. 23. Hu, R., et al., Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012. 548: p. 83-88. 24. Krol, T., Baither, D., and Nembach, E., The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. ACTA MATERIALIA, 2004. 52(7): p. 2095-2108. 25. Lin, Y., et al., Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy MATERIALS &; DESIGN, 2014. 55: p. 949-957. 26. Ping, D., et al., Grain boundary segregation in a Ni-Fe-based (Alloy 718) superalloy. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007. 456(1-2): p. 99-102. 27. Sun, W.S., WR), et al., Effect of sulfur on the solidification and segregation in Inconel 718 alloy. MATERIALS LETTERS 1997. 31(3-6): p. 195-200. 28. Xie, X.S., et al., The role of phosphorus and sulfur in Inconel 718. Superalloys 1996, 1996: p. 599-606. 29. Woodford, D.A. and Bricknell, R.H., Penetration and Embrittlement of Grain-Boundaries by Sulfur and Chlorine - Preliminary-Observations in Nickel and a Nickel-Base Super-Alloy. Scripta Metallurgica, 1983. 17(11): p. 1341-1344. 30. Hippsley, C.A., Sulfur Segregation and High-Temperature Brittle Intergranular Fracture in Alloy-Steels. Acta Metallurgica, 1987. 35(10): p. 2399-2416. 31. Kameda, J., High-Temperature Brittle Intergranular Cracking in High-Strength Nickel-Alloys Undoped and Doped with S, Zr and or B .1. Crack-Growth Characteristics. Acta Metallurgica Et Materialia, 1993. 41(2): p. 517-525. 32. Thompson, R.G., Mayo, D.E., and Radhakrishnan, B., The Relationship between Carbon Content, Microstructure, and Intergranular Liquation Cracking in Cast Nickel Alloy-718. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1991. 22(2): p. 557-567. 33. Radhakrishnan, B. and Thompson, R.G., A Phase-Diagram Approach to Study Liquation Cracking in Alloy 718. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1991. 22(4): p. 887-902. 34. Tancret, F., Thermo-Calc and Dictra simulation of constitutional liquation of gamma prime (gamma') during welding of Ni base superalloys. Computational Materials Science, 2007. 41(1): p. 13-19. 35. Mousavizade, S.M., F.M.G., Torkamany, M.J., Sabbaghzadehb, J. and Abdollah-zadeha, A., Effect of severe plastic deformation on grain boundary liquation of a nickel–base superalloy. Scripta Materialia, 2009. 60(4): p. 244-247. 36. Ojo, O.A., Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition. Materials Science and Technology, 2007. 23(10): p. 1149-1155. 37. Sijbrandij, S.J., et al., Atom probe analysis of nickel-based superalloy IN-718 with boron and phosphorus additions. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1998. 250(1): p. 115-119. 38. Miao, Z.J., et al., Effects of P and B addition on as-cast microstructure and homogenization parameter of Inconel 718 alloy. Transactions of Nonferrous Metals Society of China, 2012. 22(2): p. 318-323. 39. Sun, W.R., et al., Effect of phosphorus on the microstructure and stress rupture properties in an Fe-Ni-Cr base superalloy. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1997. 28(3): p. 649-654. 40. Y.S.Wang , et al., EFFECT OF SILICON ON GRAIN BOUNDARY CARBIDE PRECIPITATION AND PROPERTIES OF A COBALT FREE WROUGHTN ICK&;-BASE SUPERALLOY. Superalloys 1980, 1980: p. 63-72. 41. W.R. Sun, S.R.G., Guo, J.T., Tong, B.Y., Yang, Y.S., Sun, X.F., Guan, H.R. and Hu, Z.Q., The Common Strengthening Effect of Phosphorus, Sulfur and Silicon in Lower Contents and the Problem of a Net Superalloy. TMS, 2000: p. 467-476. 42. Yoo, K.B., Kim, J.H., and Heo, N.H., Impurities Segregation to Grain Boundary Carbide Interfaces and Grain Boundaries and the Mechanism of Elevated Temperature Intergranular Cracking in Heat-resistant Steel. Isij International, 2010. 50(11): p. 1702-1706. 43. Wagman, D.D., et al., The NBS Tables of Chemical of Chemical Thermodynamic Properties. Journal of Physical and Chemical Reference Data, 1982. 11. 44. Chen, G., et al., EFFECTS OF MAGNESIUM ON NIOBIUM SEGREGATION AND IMPACT TOUGHNESS IN CAST ALLOY 718. Superalloys 1989, 1989: p. 545-551. 45. Farahat, A.I.Z., et al., Effect of hot forging and Mn content on austenitic stainless steel containing high carbon. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2011. 530: p. 98-106. 46. Zhu, J., Cheng, Z.Y., and Ye, H.Q., The Distribution and Morphology of Trace Mg at a Grain-Boundary in a Ni-Base Superalloy. Scripta Metallurgica, 1989. 23(9): p. 1537-1542. 47. Chen, G., et al., THE ROLE OF SMALL AMOUNTS OF MAGNESIUM IN NICKEL-BASE AND IRON-NICKEL-BASE SUPERALLOYS AFTER HIGH TEMPERATURE LONG TIME EXPOSURES Superalloys 1984, 1984: p. 611-620. 48. Hays, V., et al., Use of AES to determine low solubilities of impurities: Case of MnS in austenitic stainless steel. SCRIPTA MATERIALIA, 1998. 38(3): p. 391-398. 49. Bor, H.Y., Chao, C.G., and Ma, C.Y., The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy. Scripta Materialia, 1997. 38(2): p. 329-335. 50. Ma, P.t., Yuan, Y., and Zhong, Z., CREEP BEHAVIOR OF MAGNESIUM MICROALLOYED WROUGHT SUPERALLOYS. Superalloys 1988, 1988: p. 625-633. 51. Bor, H.C., CG ; Ma, CY, The effects of Mg microaddition on the mechanical behavior and fracture mechanism of MAR-M247 superalloy at elevated temperatures. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999. 30(3): p. 551-561. 52. Li, Y.Q. and Gong, Y.H., Effects of Magnesium and Long-Term Aging on Intragranular Precipitation in Fe-Cr-Ni-Mn-Mo-V-Nb Superalloy. Journal of Materials Science, 1992. 27(24): p. 6641-6645. 53. Banerjee, K., The Role of Magnesium in Superalloys—A Review. Materials Sciences and Applications, 2011. 2: p. 1243-1255. 54. Gong, W., et al., Influence of Mg on Thermoplasticity of High-Temperature Stainless Bearing Steel Cr14Mo4. JOURNAL OF MATERIALS SCIENCE &; TECHNOLOGY, 2013. 29(12): p. 1204-1208. 55. C. S. Giggins, F.S.P., Oxidation of Ni-Cr-Al alloys between 1000oC and 1200oC. Journal of the Electrochemical Society, 1971. 118(11): p. 1782–1790. 56. Cisse, S.L., Lafont, L., Tanguy, MC, Andrieu, B.E., Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor. JOURNAL OF NUCLEAR MATERIALS, 2013. 433(1-3): p. 319-328. 57. Al-hatab, K., et al., Cyclic Oxidation Behavior of IN 718 Superalloy in Air at High Temperatures OXIDATION OF METALS, 2011. 75(3-4): p. 209-228. 58. Evans, H.E., et al., Influence of Silicon Additions on the Oxidation Resistance of a Stainless-Steel. Oxidation of Metals, 1983. 19(1-2): p. 1-18. 59. Smith, M.A., Frazier, W.E. and B.A. Pregger, Effect of sulfur on the cyclic oxidation behavior of a single crystalline, nickel-base superalloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1995. 203(1-2): p. 388-398. 60. McVay, R.V., et al., Oxidation of Low Sulfur Single Crystal Nickel-Base Superalloys. Superalloys 1992, 1992: p. 807-816. 61. Nychka, J.A., Clarke, D.R. and G.H. Meier, Spallation and transient oxide growth on PWA 1484 superalloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 490(1-2): p. 359-368. 62. André Belger, Marianne Reibold, and Paufler, P., Modulus and Hardness Change of Silicon and Sapphire Substrates by TiC/VC Multilayer Coatings. Materials Sciences and Applications, 2012. 3: p. 1-10. 63. Riedel, R., Handbook of Ceramic Hard Materials. 2004. 1. 64. J. Lacazea, P., et al., Critical Assessment Of The Fe-Ni-Ti System. Thermodynamics of alloys, 2004: p. 1-16
|