跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 15:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:雷衣鼎
研究生(外文):Lei Yi Ding
論文名稱:用變異數相依定價核心在多重波動模型之選擇權定價
論文名稱(外文):Option Pricing with Variance-Dependent Pricing Kernel under Multiple Volatility Components Model
指導教授:鄭宏文鄭宏文引用關係
指導教授(外文):Cheng, Hung-Wen
口試委員:蔡子晧張晏誠
口試委員(外文):Tsai, Tzu-HaoChang, Yen-Cheng
口試日期:2014-06-23
學位類別:碩士
校院名稱:東吳大學
系所名稱:財務工程與精算數學系
學門:數學及統計學門
學類:其他數學及統計學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:28
中文關鍵詞:定價核心伸縮係數波動溢酬多重波動模型選擇權評價
外文關鍵詞:pricing kernelscaling factorvariance premiummultiple volatility components modeloption valuation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
We take a similar form of pricing kernel which developed by Christoffersen et al (2013) to extend the multiple volatility components model. By that way, we can obtain a more elaborate model which also explains some puzzles in the market. Apart from that, a surprise result is we don't need to estimate full parameters in model. Instead of that, we estimate the scaling factor which plays an important role when changing of measure. Empirical tests demonstrate the well ability of generalized model when reconcile time series properties of stock returns with the option prices. Furthermore, we also use the in-sample and out-sample for testing the predictability of the generalized model. The result shows the pricing kernel more or less enhancing the predictability than before.
1. Introduction p.1
2. Model p.3
2.1 Multiple Volatility Components Model p.3
2.2 Implications of the Variance-Dependent Pricing Kernel p.6
2.3 Option Valuation p.8
3. Empirical Test p.10
3.1 Data p.10
3.2 Estimation p.12
4. Conclusion p.18
 Appendix p.19
 References p.27

[01]Bakshi, G., C. Cao, and Z. Chen (1997). Empirical Performance of Alternative Option Pricing Models. Journal of Finance 52, 2003-2049.
[02]Bates, D. (1996). Testing Option Pricing Models. In Handbook of Statistics, Statistical Methods in Finance, G.S. Maddala and C.R. Rao (eds.), 567-611. Amsterdam: Elsevier.
[03]Black, F., and M. Scholes (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81, 637-659.
[04]Brennan, M. (1979). The Pricing of Contingent Claims in Discrete-Time Models. Journal of Finance 34, 53-68.
[05]Brown, D., and J. Jackwerth (2001). The Pricing Kernel Puzzle: Reconciling Index Option Data and Economic Theory. Working Paper, University of Wisconsin.
[06]Christoffersen, P., S. Heston and K. Jacobs (2006). Option Valuation with Conditional Skewness. Journal of Econometrics 131, 253-284.
[07]Christoffersen, P., K. Jacobs, C. Ornthanalai, and Y. Wang (2008). Option Valuation with Long-Run and Short-Run Volatility Components. Journal of Financial Economics 90, 272-297.
[08]Christoffersen, P., Heston, S., and K. Jacobs (2013). Capturing Option Anomalies with a Variance-Dependent Pricing Kernel. Review of Financial Studies 26, 1963-2006.
[09]Engle, R., and G. Lee (1999). A Permanent and Transitory Component Model of Stock Return Volatility. In: Engle, R., White, H. (Eds.), Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W. J. Granger. Oxford University Press, New York, pp. 475-497.
[10]Heston, S. and S. Nandi (2000). A Closed-Form GARCH Option Pricing Model. Review of Financial Studies 13, 585-626.
[11]Jackwerth, J. (2000). Recovering Risk Aversion from Option Prices and Realized Returns. Review of Financial Studies 13, 433-451.
[12]Rubinstein, M. (1976). The Valuation of Uncertain Income Streams and the Pricing of Options. Bell Journal of Economics 7, 407-425.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top