|  | 
[1] 世界衛生組織,“糖尿病”, 2016 。[2] Dayakar, T., et al. "Novel synthesis and characterization of Ag@ TiO2 core shell nanostructure for non-enzymatic glucose sensor." Applied Surface Science 435 (2018): 216-224.
 [3] Damborský, Pavel, Juraj Švitel, and Jaroslav Katrlík. "Optical biosensors." Essays in biochemistry 60.1 (2016): 91-100.
 [4] Norton, David P., et al. "ZnO: growth, doping & processing." Materials today 7.6 (2004): 34-40.
 [5] Liang, Zhen, and Xiaojun Zhang. "Zn–ZnO@ TiO2 nanocomposite: a direct electrode for nonenzymatic biosensors." Journal of Materials Science 53.10 (2018): 7138-7149.
 [6] Pietruszka, R., et al. "New efficient solar cell structures based on zinc oxide nanorods." Solar Energy Materials and Solar Cells 143 (2015): 99-104.
 [7] Voss, Tobias, and Siegfried R. Waldvogel. "Hybrid LEDs based on ZnO nanowire structures." Materials Science in Semiconductor Processing 69 (2017): 52-56.
 [8] Askari, Mohammad Bagher, et al. "Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite." Optik-International Journal for Light and Electron Optics 149 (2017): 447-454.
 [9] Haider, Adawiya J., et al. "Exploring potential environmental applications of TiO2 nanoparticles." Energy Procedia 119 (2017): 332-345.
 [10] Feng, Lili, et al. "MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery." Nanoscale research letters 9.1 (2014): 290.
 [11] Ahmad, Khursheed, Akbar Mohammad, and Shaikh M. Mobin. "Hydrothermally grown α-MnO2 nanorods as highly efficient low cost counter-electrode material for dye-sensitized solar cells and electrochemical sensing applications." Electrochimica Acta 252 (2017): 549-557.
 [12] Bai, Xianlin, et al. "Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors." Electrochimica Acta (2018).
 [13] Zeng, Zheng, et al. "Uniformly electrodeposited α-MnO2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction." Electrochimica Acta 256 (2017): 232-240.
 [14] Usha, V., et al. "Effect of catalysts on the synthesis of CuO nanoparticles: structural and optical properties by sol–gel method." Superlattices and Microstructures 86 (2015): 203-210.
 [15] Gao, Shitao, et al. "Micromorphology and structure of pyrolytic boron nitride synthesized by chemical vapor deposition from borazine." Ceramics International 44.10 (2018): 11424-11430.
 [16] Li, Zhenqing, et al. "Alignment and counting of mitochondria based on capillary electrophoresis." Sensors and Actuators B: Chemical 265 (2018): 110-114.
 [17] Babu, Eadi Sunil, et al. "Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport." Chemical Physics Letters 658 (2016): 182-187.
 [18] Alvi, N. H., et al. "Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method." Materials Letters 106 (2013): 158-163.
 [19] Chang, Tai-Hsun, et al. "Formation of urchin-like CuO structure through thermal oxidation and its field-emission lighting application." Journal of Alloys and Compounds 644 (2015): 324-333.
 [20] 莊達人 ,“VLSI製造技術 製造技術 ”,高立圖書股份有限公司 ,1995。
 [21] Iwata, K., et al. "ZnO growth on Si by radical source MBE." Journal of Crystal Growth 214 (2000): 50-54.
 [22] Sun, Ye, Gareth M. Fuge, and Michael NR Ashfold. "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods." Chemical Physics Letters 396.1-3 (2004): 21-26.
 [23] Nosker, R. W., P. Mark, and J. D. Levine. "Polar surfaces of wurtzite and zincblende lattices." Surface Science 19.2 (1970): 291-317.
 [24] 施敏 、張俊彥 ,“半導體元件與物理製作技術 ”,高立圖書公司 ,1996。
 [25] Zhou, Fan, et al. "Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors." Materials Science in Semiconductor Processing 56 (2016): 137-144.
 [26] Knoll, Max. "Aufladepotentiel und sekundäremission elektronenbestrahlter körper." Zeitschrift für technische Physik 16 (1935): 467-475.
 [27] 羅聖全 ,“科學基礎之重要利器 科學基礎之重要利器 科學基礎之重要利器 科學基礎之重要利器 科學基礎之重要利器 -掃描式電子顯微鏡 掃描式電子顯微鏡 掃描式電子顯微鏡 掃描式電子顯微鏡 掃描式電子顯微鏡 (SEM) ”,科學研習 科學研習 科學研習 ,台 灣中央大學, 2013年 5月, pp.52。
 [28] Lyman, Charles E., et al. Scanning electron microscopy, X-ray microanalysis, and analytical electron microscopy: a laboratory workbook. Springer Science & Business Media, 2012.
 [29] 林麗娟 ,“X光繞射原理及其應用 光繞射原理及其應用 ”,工業材料雜誌 ,86期,1994年 2月, pp.101-102.
 [30] Rahman, Md Mahbubur, et al. "A comprehensive review of glucose biosensors based on nanostructured metal-oxides." Sensors 10.5 (2010): 4855-4886.
 [31] Bard, Allen J., and Larry R. Faulkner. "Fundamentals and applications." Electrochemical Methods 2 (2001): 482.
 [32] Al-Mokaram, Ali, et al. "The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole–chitosan–titanium dioxide nanocomposite films." Nanomaterials 7.6 (2017): 129.
 [33] Si, Peng, et al. "A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors." Journal of Materials Chemistry B 1.1 (2013): 110-115.
 [34] Krzywiecki, M., et al. "X-ray Photoelectron Spectroscopy characterization of native and RCA-treated Si (111) substrates and their influence on surface chemistry of copper phthalocyanine thin films." Thin Solid Films 518.10 (2010): 2688-2694.
 [35] Chen, Jin, Wei-De Zhang, and Jian-Shan Ye. "Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite." Electrochemistry Communications 10.9 (2008): 1268-1271.
 [36] Farid, Mohammad Masoudi, et al. "Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles." Food chemistry 194 (2016): 61-67.
 [37] Yang, Yu Jun, and Shengshui Hu. "Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide." Electrochimica Acta 55.10 (2010): 3471-3476.
 [38] Xiao, Fei, et al. "Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors." Biosensors and Bioelectronics 41 (2013): 417-423.
 [39] Xiao, Fei, et al. "Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: a modular approach toward high-performance flexible electrodes." Acs Nano 6.1 (2011): 100-110.
 [40] Cui, Hui-Fang, et al. "Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites." Analytica chimica acta 594.2 (2007): 175-183.
 [41] Holt-Hindle, Peter, et al. "Amperometric glucose sensor based on platinum– iridium nanomaterials." Electrochemistry Communications 10.10 (2008): 1438-1441.
 [42] Cheng, Ta-Ming, et al. "(110)-exposed gold nanocoral electrode as low onset potential selective glucose sensor." ACS applied materials & interfaces 2.10 (2010): 2773-2780.
 [43] Bai, Yu, et al. "Enzyme-free glucose sensor based on a three-dimensional gold film electrode." Sensors and Actuators B: Chemical 134.2 (2008): 471-476.
 
 |