跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林鼎超
研究生(外文):LIN, TING-CHAO
論文名稱:具快速暫態響應及兩段智能開關控制之高效率降壓轉換器
論文名稱(外文):A High-Efficiency Buck Converter with Fast Transient Response and Smart Dual Switch Control
指導教授:林嘉洤
指導教授(外文):LIN, JIA-CHUAN
口試委員:黃淑絹葉美玲黃弘一林嘉洤
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:119
中文關鍵詞:降壓轉換器脈波寬度調變智能開關控制快速暫態響應電流偵測電路
外文關鍵詞:buck converterpulse width modulationsmart switch controlfast transient responsecurrent sensing circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
隨著可攜式產品市場蓬勃發展,將眾多功能整合至同一模組上已是主流趨勢,這也使得產品越加耗電,電池續航力降低。然而,可攜式產品大多處於待機狀態,透過改善轉換器的輕載效率能有效延長電池續航時間。為了實現於寬負載範圍內均有良好轉換效率,以及因應負載劇烈變化時,能夠迅速提供穩定輸出電壓,快速暫態響應和智能開關技術在本論文中被提出。
本論文提出一具快速暫態響應之寬負載高效率降壓轉換器,在提升轉換效率部分,將功率電晶體切割成兩組,並依據當前負載電流的條件,開啟相對應的功率電晶體數量,使切換損失最佳化。除此之外也將電流偵測電路改良,使其能夠同時偵測兩組功率電晶體,省略了額外的電壓電流轉換器,達到減少晶片面積及提升轉換效率的效果。而在暫態響應部分,藉由改變誤差放大器的輸出級,將輸出電壓變化資訊回授給內部系統迴路,在暫態發生時,可提供額外的補償電流路徑至迴路補償器上,改變降壓轉換器的工作週期,使輸出電壓快速回到穩定,達到提升暫態響應的表現,而此技術也適用於現今常見的動態電壓調整技術。
最後本篇論文使用台灣積體電路公司0.35um 2P4M CMOS 製程實現,輸入電壓範圍從2.7V到4.2V,輸出電壓為1.8V,操作頻率2MHz,晶片面積為1.46 mm^2,負載電流範圍為30mA到600mA,轉換效率皆在91%以上,最高效率在250mA時有95.49%,暫態響應回復時間從輕載(50mA)到重載(500mA)及重載(500mA)到輕載(50mA)分別為14.8us和15us。適用於可攜式電子產品之電源管理。

As the development of the portable product market flourishing quickly, modularizing multiple function has become the mainstream. And this also made the power consumption higher, and shorter the battery life. However, portable devices stay in stand-by mode most of the time, through improving light – load efficiency of the converters is efficient to extend its’ battery life. To achieve the conversion efficiency in the wide-load range well, moreover, when in respond to dramatically change, enable to provide stable voltage rapidly. Therefore, fast transient response and smart switching technique are submitted in this thesis.
This thesis presents a wide load range high efficiency buck converter with fast transient response control. In the portion of increasing conversion efficiency, we separate power transistor into two parts, and according to the condition of the load current, open the power transistor correspondingly, which can achieve the optimal switching lose. Besides, improving current sensing circuit enables to detect both power transistors at the meantime, so as to reduce additional V-to-I converting circuit, and to reach the best efficiency effect of power transformation. As for fast transient response control, by changing the output stage of the error amplifier to transfer the output voltage variation to the inner system loop, when the load current changes transiently, it can provide additional compensational current path to the compensational resistor, and change the work period of the buck converter, making output voltage quickly back to stable, and improve the performance of transient response. And this technique is suitable for dynamic voltage scaling techniques usually seen nowadays.
This thesis is implemented with TSMC 0.35um 2P4M 5V CMOS process. The input voltage range of converter is from 2.7V to 4.2V, output voltage set at 1.8V, operating frequency 2MHz, and chip area 1.465 mm^2. The range of load current is 30mA to 600mA and the conversion efficiency is all above 91%. The maximum efficiency will be 95.49% at 250mA. The recovery time of transient response, from light load (50mA) to heavy load (500mA) and heavy load (500mA) to light load (50mA) are 14.8us and 15us, respectively. For what have mentioned above are suitable for the power management of portable electronic products.

List v
List of Figures viii
List of Tables xii
Chapter 1 Introduction - 14 -
1.1 Background and Motivation - 14 -
1.2 Thesis Organization - 17 -
Chapter 2 Fundamental of DC-DC Regulators - 18 -
2.1 Linear Regulator - 18 -
2.2 Switching Capacitor Regulator - 19 -
2.3 Switching Regulator - 20 -
2.3.1 Buck Regulator - 21 -
2.3.2 Boost Regulator - 22 -
2.3.3 Buck-Boost Regulator - 24 -
2.3.4 Synchronous and Asynchronous Switching Regulator - 26 -
2.3.5 Comparison of Power Regulators - 28 -
2.4 Modulation Technique of Switching Regulator - 29 -
2.4.1 Pulse Width Modulation (PWM) - 29 -
2.4.2 Pulse Frequency Modulation (PFM) - 30 -
2.4.3 Power Loss Comparison of PWM and PFM - 32 -
2.5 Significant Specifications of Switching Regulator - 33 -
2.5.1 Conversion Efficiency - 33 -
2.5.2 Line Regulation - 34 -
2.5.3 Load Regulation - 35 -
2.5.4 Transient Response - 35 -
Chapter 3 Design Principle of Current Mode Buck Regulator - 37 -
3.1 Controlling Method of Buck Regulator - 37 -
3.1.1 Voltage Mode Control - 37 -
3.1.2 Current Mode Control - 38 -
3.2 Sub-harmonic Oscillation of Current Mode Control - 40 -
3.3 The Method of Ramp Compensation - 43 -
3.4 Stability Analysis of Current Mode Buck Regulator - 45 -
3.4.1 PWM Modulator Gain - 46 -
3.4.2 Current Sampling Gain - 47 -
3.4.3 Control to Output Gain - 49 -
3.4.4 PI Compensation Analysis - 50 -
3.5 Smart Switch Control Technique - 52 -
3.5.1 Design Method of Smart Switch Control - 53 -
3.5.2 The Problems of Smart Switch Control - 54 -
3.6 Fast Transient Technique - 56 -
3.6.1 Current Mode Buck Regulator with Fast Transient Technique- 56 -
3.6.2 Error Amplifier with Fast Transient Control Circuit - 59 -
Chapter 4 Circuit Implementation and Simulation Results - 62 -
4.1 Bias Circuit with Start-Up - 63 -
4.2 Bandgap Voltage Reference Circuit - 66 -
4.3 Error Amplifier - 69 -
4.4 Hysteresis Comparator Circuit - 71 -
4.5 Soft-Start Circuit - 74 -
4.6 Ramp and Clock Generator - 76 -
4.7 Current Sensing Circuit - 78 -
4.8 Voltage to Current Converter - 82 -
4.9 Smart Non-overlap Buffer - 85 -
4.10 Dual Switch Control Circuit - 87 -
Chapter 5 System Simulation Results, Layout and Measurement- 91 -
5.1 System Simulation Results - 91 -
5.1.1 Soft-Start Simulation - 91 -
5.1.2 Line Regulation - 92 -
5.1.3 Load Regulation - 94 -
5.1.4 Output Voltage Ripple - 96 -
5.1.5 Transient Response - 98 -
5.1.6 Conversion Efficiency - 102 -
5.2 Full Circuit Layout - 104 -
5.2.1 Layout Consideration - 106 -
5.3 Chip Measurement - 109 -
5.3.1 PCB Layout - 109 -
5.3.2 Measurement Setup - 110 -
5.4 Comparison of proposed Buck Regulator - 113 -
Chapter 6 Conclusion and Future Work - 114 -
6.1 Conclusions - 114 -
6.2 Future Work - 115 -
References - 116 -

[1]J. Falin, Texas Instrument, “智慧型手機電源管理系統的設計,” in 零組件雜誌6月號, 2004.
[2]W. L. Liou, P. H. Chen and J. C. Tseng, “A Synchronous boost regulator with PWM/PFM mode operation,” IEEE 8th International Conference on ASIC, pp. 1066–1069, Oct. 2009.
[3]C. W. Lin, “Digitally Programmable Buck Converter for Dynamic Voltage Scaling Systems,” 系統晶片科技中心技術期刊第四期, 2006.
[4]G. A. Rincon-Mora and P. E. Allen, “A Low-Voltage, Low Quiescent Current, Low-Drop-Out Regulator,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 36-44, Jan, 1998.
[5]D. Maksimovic, and S. Dhar, “Switched-Capacitor DC-DC Converters for Low-Power On-Chip Applications,” Power Electronics Specialists Conference, pp. 54-59, Jul, 1999.
[6]H. W. Whittington, B. W. Flynn and D. E. Macpherson, “Switched Mode Power Supplies: Design And Construction,” Power Engineering Journal, vol. 12, Apr. 1998.
[7]H. H. Ko, “A High Efficiency Synchronous CMOS Switching Buck Regulator with Accurate Current Sensing Technique,” Master Thesis, National Central University, 2007.
[8]R. W. Erickson and D. Maksimovic, “Fundamentals of Power Electronics,” (2nd Edn.), Kluwer Academic Publishers, 2001.
[9]R. Selders, “Synchronous rectification in High performance,” in Power Designer No. 112 National Semiconductor, 2006.
[10]F. F. Ma, W. Z. Chen, and J. C. Wu, “A Monolithic Current-Mode Buck Converter With Advanced Control and Protection Circuits” IEEE Transactions on Power Electronics, vol. 22, pp. 1836-1846, Sep. 2007.
[11]R. Mammano, “Switching Power Supply Topology Voltage Mode vs. Current Mode,” Elektron Journal-South African Institute of Electrical Engineers, vol. 18, pp. 25-27, 2001.
[12]B. Lee, “Technical Review of Low Dropout Voltage Regulator Operation and Performance,” Application Report, Texas Instruments Inc., literature number SLVA072, 1999.
[13]S. S. Wang, “Design of a High-Efficiency 20MHz Switching Frequency Current-Mode Buck Converter,” Master Thesis, National Taipei University, 2013.
[14]B. M. King, “Understanding the Load-Transient Response of LDOs,” Texas Instruments Analog Application Journal, pp. 19-21, 2000.
[15]R. Ridley, “Current mode or voltage mode” Switching Power Magazine, vol. 10, pp. 4-5, 2000.
[16]C. F. Lee and P. K. T. Mok, “A Monolithic Current-mode CMOS DC-DC Converter with On-chip Current-Sensing Technique,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 3-14, Jan. 2004.
[17]J. T. Mossoba and P. T. Krein, “Small Signal Modeling of Sensorless Current Mode Controlled DC-DC Converters,” IEEE Workshop on Computers in Power Electronics, pp. 23-28, June. 2002.
[18]W. L. Hsieh, “High Switching DC-DC Buck Converters in Current Domain Control,” Master Thesis, National Chiao Tung University, 2008.
[19]R. B. Ridley, “A New, Continuous-Time Model for Current-Mode Control,” IEEE Transactions on Power Electronics, vol. 6, pp. 271-280, Apr. 1991.
[20]R. B. Ridley, “A New, Continuous-Time Model for Current-Mode Control with Constant Frequency, Constant On-Time, and Constant Off-Time, in CCM and DCM,” Power Electronics Specialists Conference, pp. 382-389, 1990.
[21]P. Allen and D. Holberg, CMOS analog circuit design: Oxford University Press, USA, 2002.
[22]K. Leung, P. Mok, and C. Leung, “A 2-V 23-μA 5.3-ppm/°C Curvature-Compensated CMOS Bandgap Voltage Reference,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 561-564, Mar. 2003.
[23]B. Razavi, Design of analog CMOS integrated circuits: McGraw-Hill Singapore, 2000.
[24]R. Gregorian, “Introduction to CMOS OP-AMPS and Comparators,” John Wiley & Sonc, Inc., 1999.
[25]B. Sahu and G. A. Rincon-Mora, “A High-Efficiency Dual-Mode Dynamic Buck-Boost Power Supply IC for Portable Applications,” 18th International Conference on VLSI Design, pp.858-861, Jan. 2005.
[26]B. A. Legates, “Low Voltage Current Sense Amplifier,” United States Patent, Patent Number 5,969,574, Oct.1999.
[27]C. Yoo, “A CMOS Buffer without Short-Circuit Power Consumption,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 935-937, 2000.
[28]W. R. Liou, M. L. Yeh and Y. L. Kuo, “A High Efficiency Dual-Mode Buck Converter IC for Portable Applications,” IEEE Transactions on Power Electronics, vol. 23, Mar. 2008.
[29]梁適安 交換式電源供給器之理論與實務設計: 第七版. 全華科技圖書 2004.
[30]C. F. Lee and P. K. T. Mok, “On-Chip Current Sensing Technique for CMOS Monolithic Switch-Mode Power Converters,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 265–268, May. 2002.
[31]X. Zhou, M. Donati, L. Amoroso and F. C. Lee, “Improved Light-Load Efficiency for Synchronous Rectifier Voltage Regulator Module, Power Electronics,” IEEE Transactions, vol. 15, pp. 826-834, Sep. 2000.
[32]C. K. H. Chen, H. W. Huang and S. Y. Kuo, “Fast-transient DC-DC converter with on-chip compensated error amplifier,” IEEE Trans. Circuits Syst. ii, Exp. Briefs, vol. 54, pp. 1150-1154, Dec. 2007.
[33]Y. H. Lee, S. J. Wang, C. Y. Hsieh, and K. H. Chen, “Current mode DC-DC buck converters with optimal fast-transient control,” IEEE International Symposium on Circuits and Systems, pp. 3045-3048, May, 2008.
[34]R. J, “High-performance error amplifier for fast transient DC-DC converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, pp. 591-595, Sep. 2005.
[35]S. F. K, W. H. Tsui and C. Y, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications,” IEEE J. Solid-State Circuits, vol. 43, pp. 815-822, Apr. 2008.
[36]T. J. Tseng, C. H. Wu and L. R. Chang-Chien, “Fast transient voltage-mode buck regulator applying ramp signal with a variable DC-offset scheme,” IET Power Electronics, vol. 5, pp. 1408-1417, Sep. 2012.
[37]P. J. Liu, T. H. Chen and S. R. Hsu, “Area-efficient error amplifier with current-boosting module for fast-transient buck converters,” IET Power Electronics, vol. 9, pp. 2147-2153. Aug. 2016.
[38]C. C. Wong, H. H. Wu, M. H. Shih and C. L. Wei, “Design of a fast-transient current-mode buck DC-DC converter,” IEEE Future Energy Electronics Conference, Nov. 2013.
[39]M. M. Du, H. Lee and J. Liu. “A 5-MHz 91% peak-power-efficiency buck regulator with auto-selectable peak-and valley-current control,” IEEE Custom Integrated Circuits Conference, Nov. 2010.
[40]C. I Chiu, K. C. Chang, C. H. Hsu, G. N. Sung, “Design of Ultra-Wide-Load, High-Efficient DC-DC Buck Converters”, ICECS 2011 IEEE International Conference, pp. 297-300, Dec. 2011.
[41]L. W. Hu, “Design of Fast Transient Response Buck Converter using Pulse Width Modulation,” Master Thesis, National Dong Hwa University, 2014.
[42]C. Y. Huang, K. Y. Hu, S. M. Lin, C. H. Tsai, “Fast transient current mode dc-dc converter with optimized loop response.” 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Nov. 2015.
[43]F. S. Yao, “Design of a Smart Multiple Switch Control Current mode DC to DC Boost Converter,” Master Thesis, National Taiwan Ocean University, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊