|
[1]S. John, “Strong localization of phonics in certain disordered dielectric superlattice,” Phys. Rev. Lett., Vol.58, pp.2486-2489, 1987. [2]E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics electrons,” Phys. Rev. Lett., Vol.58, pp.2059-2062, 1987. [3]N. Moll, G.L. Bona, “Comparison of three-dimensional photonic slab waveguides with two-dimensional photonic crystal waveguides: Efficient butt coupling into these photonic crystal waveguides,” J. Appl. Phys., Vol.93, pp.4986, 2003. [4]T. Bada, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electronics, Vol.38, pp.743, 2002. [5]M.Loncar, J. Vuckovic, A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt., Vol.18, pp.1362, 2001. [6]A. Scherer, O. Painter, J. vuckovic, M. Loncar, T. Yoshie, “Photonic Crystals for Confining, Guiding, and Emitting Light,” IEEE trans Nanotechnology, Vol.1, pp.4, 2002. [7]J. Moosburger, M. Kamp, A. Forchel, U. Oesterle, and R. HoudrHoudré, “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities,” J. Appl.Phys., Vol.92, pp.4791, 2002. [8] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature, Vol.390, pp.143, 1997.[9] S. Noda, A Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, Vol.407, pp.608, 2002. [10] M. Bayindir, E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express, Vol.10, pp.1279, 2002. [11] M. Koshiba, “Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide Couplers,” IEEE J. Lightwave. Tech., Vol.19, pp.733, 2001. [12] J. Sharee, McNab, Nikolaj Moll, and Yurii A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express, Vol.11, pp.2927-2939, 2003. [13] Kartik Srinivasan, Oskar Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express, Vol.10, pp.670-684, 2002. [14] Tomoyuki Yoshie, Jelena Vučković, “High quality two-dimensional photonic crystal slab cavities,” Axel Scherer, H. Chen, Dennis Deppe, Appl. Phys. Lett., Vol.79, pp.4289-4291, 2001. [15] Thomas F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol., Vol.197, pp.688-702, 2003. [16] R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys., Vol.75, pp.4753-4755, 1994. [17] S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B, Vol.62, pp.8212-8222, 2000. [18] G. P. Nordin, S. Kim, J.Cai, J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express, Vol.10, pp.1334, 2002. [19] T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B, Vol.61, pp.15688, 2000. [20] S. Boscolo, M. Midrio, “Y junctions in photonic crystal channel waveguides: high transmission and impendence matching,” Opt. Lett., Vol.27, pp.1001, 2002. [21] M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol.77, pp.3902, 2000. [22] S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett., Vol.23, pp.1855, 1998. [23] S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B, Vol.67, pp.115208, 2003. [24] Mehmet Bayindir, B. Temelkuran, and E. Ozbay, “Freezing by Heating in a Driven Mesoscopic System,” Phys. Rev. Lett., Vol.84, pp.2140, 2000. [25] C. Martijn de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E, Vol.57, pp.3502, 1998. [26] N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B, Vol.57, pp.12127, 1998. [27] E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-Binding Parametrization for Photonic Band Gap Materials,” Phys. Rev. Lett., Vol.81, pp.1405, 1998. [28] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator opticalwaveguide:a proposal and analysis,” Opt. Lett., Vol.24, pp.711, 1999. [29] Ekmel Ozbay, Mehmet Bayindir, Irfan Bulu, and Ertugrul Cubukcu, “Investigation of Localized Coupled-Cavity Modes in Two-Dimensional Photonic Bandgap Structures,” IEEE J. Quantum Electronics, Vol.38, pp.7, 2002. [30] Mehmet Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol.77, pp.24, 2000. [31] P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett., Vol.21, pp. 2017–2019, 1996. [32] A. MARTINEZ, J. MARTÍ, J. BRAVO-ABAD, and J. SÁNCHEZ-DEHESA, “Wavelength Demultiplexing Structure Based on Coupled-Cavity Waveguides in Photonic Crystals,” Fiber and Integrated Optics, Vol.22, pp.151–160, 2003. [33] Francis Nedvidek, Marcus Nebeling and Daniel Mailloux, “Deploying CWDM to Overcome Bandwidth Limitations of FTTH Access Networks,” 2006 FTTH Conference & Expo. [34] C. Bouchat, C. Dessauvages, F. Fredricx, C. Hardalov, R. Schoop, and P. Vetter, “WDM-upgraded PONs for FTTH and FTTBusiness.” [35] K. M. Ho, C. T. Chan, and C. M. Soukouils, “Existence of a photonic gap in periodic dielectric structures,” Phy. Rev. Lett., Vol.65, pp.3152-3155, 1990. [36] K. M. Leung, and Y. F. Liu, “Photon band structures: The plane-wave method,” Phys. Rev. B, Vol.41, pp.10188-10190, 1990. [37] Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett., Vol.65, pp.2650-2653, 1990. [38] B. C. Gupta, C. H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E., Vol.69, pp.06615-1-6, 2004. [39] P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun., Vol.85, pp.306-322, 1995. [40] K. S. Kunz and R. J. Luebbers, “The finite difference time domain method for electromagnetics,” Boca Raton FL: CRC Press, 1993. [41] G. S. Smith, M. P. Kesier, J. G. Maloney, and B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave and optical technology letters, Vol.11, pp.169-174, 1996. [42] J. G. Maloney, M. P. Kesier, B. L. Shirely, and G. S. Smith, “A simpled description for waveguiding in photonic bandgap materials,” Microwave and optical Technology Letters, Vol.14, pp.261-266, 1997. [43] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propagat. Vol. 14, pp. 302-307, 1966. [44] J. Adhidjaja and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” Geophysics J. Int., Vol. 98, pp.233, 1989. [45] M. Piket-May and A. Taflove, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Optics Letter, Vol.18, pp.568-570, 1993. [46] M. Celuch-Marcysiak and W. Gwarek, “Higher order modeling of media interfaces for enhanced FDTD analysis of microwave circuits,” in 24th European Microwave Conference, Vol.24, pp.1530, 1994. [47] Chongjun Jin, Shouzhen Han, Xiaodong Meng, Bingying Cheng, and Daozhong Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys., Vol.91, pp.7, 2002. [48] Shanhui Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B, Vol.18, pp.2, 2001. [49] Tapio Niemi, Lars Hagedorn Frandsen, Kristian Knak Hede, Anders Harpøth, Peter Ingo Borel, and Martin Kristensen, “Wavelength-Division Demultiplexing Using Photonic Crystal Waveguides,” IEEE Photonics Technology Letters, Vol.18, pp.1, 2006. [50] Shanhui Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Optics Express, Vol.3, pp. 4-11, 1998. [51] Bong-Shik Song, Takashi Asano, Yoshihiro Akahane, Yoshinori Tanaka, and Susumu Noda, “Multichannel Add/Drop Filter Based on In-Plane Hetero Photonic Crystals,” Journal of Lightwave Technology, Vol.23, pp.1449-1455, 2005. [52] Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Pratrher, “Multichannel wavelength division multiplexing with photonic crystals,” Applied Optics, Vol.40, pp.2247-2252, 2001. [53] Sangin Kim, Ikmo park, Hanjo Lim, and Chul-Sik Kee, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Optics Express, Vol.12, pp.5518-5525, 2004. [54] Honglian Ren, Chun Jian, Weisheng Hu, Mingyi Gao, Jingyuan Gao and Jingyuan Wangm, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Optics Express, Vol.14, pp.2446-2458, 2006. [55] Chih-Wen Kuo, Chih-Fu Chang, Mao-Hsiung Chen, and Shih-Yuan Chen, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Optics Express, Vol.15, pp.1, 2007. [56] T. Lang, J.-J. He, S. He, "Cross-oder arrayed waveguide grating design for triplexers in fiber access networks," IEEE Photonics Tech. Lett., Vol.18, pp.232-234, 2006. [57] X. Li, G-R Zhou, N-N Feng, W. Huang, "A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver," IEEE Photonics Tech. Lett., Vol.17, pp.1214-1216, 2005. [58] H. A. Haus, “Waves and Field in Optoelectronics,” 1984. [59] H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” J. Quantum Electron, Vol.28, pp.205-213, 1992. [60] David M. Pustai, Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather, “Tunable photonic crystal microcavities,” Appl. Opt., Vol.41, pp.5574-5579, 1992. [61] Hitomichi TAKANO, Bong-Shik SONG, Takashi ASANO and Susumu NODA, “Highly Effective In-Plane Channel-Drop Filters in Two-Dimensional Heterostructure Photonic-Crystal Slab,” Japanese Journal of Applied Physics, Vol.45, pp.6078-6086, 2006. [62] Hitomichi TAKANO, Bong-Shik SONG, Takashi ASANO and Susumu NODA, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Optics Express, Vol.14, pp.3491, 2006.
|