跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王文淳
研究生(外文):Wen-Chun Wang
論文名稱:多元化型鋰離子充/放電循環效益特性解析
論文名稱(外文):Performance Analysis of charge/discharge cycle effect of Multi-type Li-ion battery electrolyte and electrode systems
指導教授:李達生李達生引用關係
指導教授(外文):Da-Sheng Li
口試委員:李靖男莊嘉琛
口試日期:2010-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:79
中文關鍵詞:鋰電池LiMPO4
外文關鍵詞:Li-ion batteryLiMPO4
相關次數:
  • 被引用被引用:1
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在1997年,Goodenough團隊提出LiMPO4的通稱,同年度Padhi提出並論證LiFePO4可做為可充電鋰離子電池的正極材料;在2000年,Amine 等人以實驗出橄欖石結構之LiCoPO4晶粒結構大小;2001年Yamada等人,以凝膠-溶膠合成橄欖石結構之LiMnPO4;在2004年,Herle等人以固態法合成橄欖石結構之LiNiPO4。
傳統上磷酸鋰鐵電池材料對於環境無害,取得方便,充電與放電間結構相似,運轉時安全穩定性佳。且地球上鐵的蘊藏豐富成本低、具熱穩定性佳、具電子導電循環性增強以及鋰離子間距離增加,故活性高,目前已廣泛應用在電動自行車、油電混合車與電動車。
因為LiFePO4複合材料,由於鐵元素導電能力較其他材料低,因此若使用碳包覆於正極材料,可提升至大規模、高速率或縮小晶粒徑度使離子空間增加,提升放電量;故嘗試提出四種正極材料LiCoPO4、LiMnPO4、LiNiPO4與LiFePO4,並個別探討其理論容量、充/放電脈衝功率、充/放電時間、COP與電流效率,可期望未來能應用在大型電動車輛、太陽能及風力發電的儲能設備、混合電動車,邁向高效益、低成本化產品時代。


In 1997, Goodenough et. Al. present the called of LiMPO4, at the same year, Padhi proves that LiFePO4 can be used as the cathode materials of rechargeable lithium-ion battery;In 2000, Amine et. Al. has investigate the crystal size of olivine structure LiCoPO4;In 2001, Yamada et. Al. has fabricated olivine structure LiCoPO4 by sol-gel;In 2004, Herle et. Al.has fabricated olivine structure LiNiPO4 by solid state method.
Traditional Lithium Iron Phosphate Battery is not harmless to environment, easy to obtain, the charge and discharge structure are similarity, very safe and stable while working. And the earth is rich of Iron, so the cost of iron is low, besides, iron has good thermal stability, high activity, so it has been widely use in hybrid vehicles, electric cars, electric bikes.
LiFePO4 compound material, iron’s conductivity is lower than other material, so if use carbon coated on the cathode, can improve to big scale, high rate or decrease crystal size to increase ion space, thus to increase dicharge. So we discuss four kinds of the cathode material: LiCoPO4、LiMnPO4、LiNiPO4 and LiFePO4,discuss the theoretical capacity, frequency of charge/discharge, COP and current efficiency, respectively. Hope we can use this technology on large electric vehicles, solar and wind power storage device, hybrid vehicle in the future, and into a high efficiency, low cost products generation.


摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.前言 1
2.研究動機與目的 1
3.文獻回顧 2
4.研究流程 3
5.論文內容 4
第二章 電力系統應用儲能技術 5
2.1電池儲能技術 6
2.1.1蓄電池 6
2.2控制和功率調節系統(C-PCS) 11
2.2.1儲能控制電源系統設計改善 11
2.2.2 BESS控制設計(間接應用)改善電力設備能力 13
2.3 電力驅動汽車(EDV)電池系統運用 14
2.4 儲能模式經濟和電力系統穩定特性 15
2.4.1 BESS模組成本經濟分析 15
2.4.2 BESS模型電力系統 16
2.5 BESS未來展望 17
2.5.1 BESS技術 17
第三章 各式鋰離子二次電池基本理論 19
3.1基本構造 19
3.1.1鋰離子電池特性 20
3.2氧化物型正極材料 21
3.2.1鈷酸鋰(LiCoO2) 21
3.2.2 鎳酸鋰(LiNiO2) 23
3.2.3 錳酸鋰(LiMn2O4) 25
3.2磷酸型正極材料 28
3.2.1磷酸鋰鈷(LiCoPO4) 28
3.2.2磷酸鋰鎳(LiNiPO4) 29
3.3.3磷酸鋰錳(LiMnPO4) 29
3.3.4磷酸鋰鐵(LiFePO4) 30
3.4負極材料 32
3.4.1碳材料 33
3.4.2非碳類材料 35
3.5電解質 35
3.5.1 LiPF3(C2F5)3 (LiFAP) 36
3.5.2 LiN(SO2CF3)2 (LiTFSI) 37
3.5.3 LiBC4O8 (LiBOB) 37
第四章 多元化型FePO4/LiFePO4/ LiFePO4/C鋰離子電池充電循環最佳化效益比較 38
4.1各型多元化鋰離子電池充/放電理論架構 38
4.2 FePO4物理特性 38
4.2.1 FePO4基礎理論 38
4.2.2 FePO4特性 39
4.3 LiFePO4物理特性 41
4.3.1 LiFePO4基礎理論 41
4.3.2 LiFePO4分子結構 42
4.3.3 LiFePO4特性 42
4.4 LiFePO4/C物理特性 44
4.4.1 LiFePO4/C基礎理論 44
4.4.2 奈米碳纖維官能基改質 44
4.4.3 LiFePO4/C分子結構 44
4.4.4 LiFePO4/C特性 45
4.5各型鋰離子電池充電循環特性 47
4.5.1 FePO4充電理論 47
4.5.2 LiFePO4充電理論 50
4.5.3 LiFePO4/C充電理論 54
第五章 多元化型LiMPO4鋰離子電池(M=Co、Mn、Ni、Fe)充/放電循環應用效益研究 56
5.1鋰電池作動原理 56
5.2 LiMPO4(M= Co、Mn、Ni) 58
5.3 鋰電池正極材料應用特性 58
5.4系統設計理論計算 59
5.4.1理論容量的計算 59
5.4.2電池系統性能分析 60
5.4.3 各型系統性能效率計算 61
5.5 結果與討論 65
第六章 結論 69
參考文獻 71
符號說明 78



[1]莊嘉琛,李達生,李金魁,王文淳 "多元化型LiMPO4鋰離子電池(M=Co、Mn、Ni、Fe)充/放電循環應用效益研究"機電整合雜誌,受搞出刊中,2010年11月。
[2莊嘉琛,張聖杰,張山立 "混元型燃料電池/鋰電池在便攜式電源系統應用效益研究"機電整合雜誌, Vol.123,NO.11,pp.109~117,2008年11月,台北,中華民國.
[3]莊嘉琛,葉家宏, "直接甲醇燃料電池應用於3C攜式設備效益研究",機電整合雜誌, Vol.97,NO.9, pp.115~124,2006年, 台北, 中華民國.
[4]葉家宏, 莊嘉琛,"直接甲醇燃料電池應用於3C便攜式設備效益研究", 國立台北科技大學碩士學位論文, 2006年, 7月, 台北, 中華民國.
[5]莊嘉琛, 鄭評文, 戴健珉, 2003, “直接甲醇型燃料電池之行動電話系統應用解析研究”, 機電整合雜誌, Vol. 12 , pp.123~131, 台北, 中華民國.
[6]K.C. Divya Jacob Østergaard “Battery energy storage technology for power systems—An overview” Technical University of Denmark, Kgs. Lyngby 2800, Denmark
[7]H. Larsen, L.S. Petersen, Renewable energy for power and transport, Ris øEnergy Report, 5, 2006.
[8]M.-T. Tsai, C.-E. Lin, W.-I. Tsai, C.-L. Huang, Design and implementation of a demand-side multifunction battery energy storage system, IEEE Transactions on Industrial Electronics 42 (6) (1995) p.p.642–652.
[9]S.Chiang, S.Huang,C.Liaw, Three-phase multifunctional battery energy storage system, IEE Proceedings-Electric Power Applications 142 (4) (1995) p.p.275–284.
[10]W. Lachs, D. Sutanto, Uncertainty in electricity supply controlled by energy storage, Proceedings of International Conference on Energy Management and Power Delivery, EPDM’95, 1, November 21–23, 1995, pp. 302–307.
[11]K.Leung and D. Sutanto, A new topology of a battery energy storage system, Proceedings of International Conference on Energy Management and Power Delivery, EMPD’98, 1, March 3–5, 1998, p.p.253–258.
[12]D.Sutanto, Energy storage system to improve power quality and system reliability, in: Student Conference on Research and Development, SCOReD 2002, 2002, pp.8–11.
[13]J. Zeng,B. Zhang, C.Mao,Y. Wang, Use of battery energy storage system to improve the power quality and stability of wind farms, in:International Conference on Power System Technology, PowerCon 2006, October 1–6, 2006.
[14]T.-Y. Lee, N. Chen, Determination of optimal contract capacities and optimal sizes of battery energy storage systems for time-of-use rates industrial customers, IEEE Transactions on Energy Conversion 10 (3) (1995) p.p.562–568.
[15]D. Barry, Challenges of integrating wind generation into the Irish system, Eirgrid Presentation on Wind Generation in Ireland, 2007.
[16]Buncrana, co. Donegal VRB ess energy storage and the development of dispatch able wind turbine output-feasibility study for the implementation of an energy storage facility at sorne hill, , VRB Power Systems, Inc., 2007.
[17]An introduction to wind and the integration of a VRB ess, VRB Power Systems,Inc., 2007.
[18]The multiple benefits of integrating the vrb-ess with wind energy-case studies in mwh applications, VRB Power Systems, Inc., 2007.
[19]紀勝財「二次單電池產品可靠度試驗之研究」華梵大學工業工程與經營資訊學位論文
[20]K.Mizushima,P.C.Jones,P.J.Wiseman and J.B.Goodenogh, ”LixNiO2(0:A New Cathode Materials for batteries of high energy density”, Mater.Res.
Bull,17,783(1980)
[21]Wang M J ,Navrotsky A.Solid State Ionics,2004,p.p.166-167
[22]Wilmont F. Howard, Robert M. Spotnitz “Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries”p.p Journal of Power Sources 165 (2007) p.p.887–891
[23]L.D.Dyer, B.S.Borie and G. P. Smith, "Alkali metal-nickel oxides of the type MNiO2", Journal of American Chemical Society, 78 (1954) p.p.1499-1503.
[24]J.B.Goodenough, D.G.Wickham and W.J.Croft,"Some ferrimagetic properties of the system LixNi1-xO", Journal of Applied Physics, 29 (1958) p.p.382.
[25]D.G. Wickham and W. J. Croft, "Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese", Journal of Physics and Chemistry of Solids, 7 (1958) p.p.351.
[26]費定國與劉致銘,“鋰離子電池未來商用陰極材料-鋰錳氧化物”,工業材料,第148期,(1999),p.p.155。
[27]Wilmont F. Howard,Robert M. Spotnitz "Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries" March 2007, p.p.887-891.
[28]Helmut Ehrenberg, Natalia N. Bramnik,Anatoliy Senyshyn,Hartmut Fuess “Crystal and magnetic structures of electrochemically delithiated Li1-xCoPO4 phases“January 2009, Pages 18-23,Germany.
[29] http://cmp.ameslab.gov/NeutronXrayScattering/project.html
[30]Abrahams and K.S. Easson, “Structure of lithium nickel phosphate”. Acta Cryst. C49 (1993), pp. 925–926.
[31]Fei Zhou, Matteo Cococcioni, Kisuk Kang, Gerbrand Ceder “The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni” Electrochemistry Communications 6 (2004) 1144–1148
[32]P.G.Balakrishnan,R.Ramesh,T.Prem Kumar “Safety mechanisms in lithium-ion batteries” Journal of Power Sources, Volume 155, Issue 2, 21 April 2006, Pages 401-414
[33]Sarah G. Stewart, Venkat Srinivasanand John Newmana.”Modeling the Performance of Lithium-Ion Batteries and Capacitors during Hybrid-Electric-
Vehicle Operation” 2008 p.p.664-671.
[34]張聖杰, 莊嘉琛,"混元型燃料電池/鋰電池在便攜式電源系統特性評估",國立台北科技大學碩士學位論文, 2008年, 7月, 台北, 中華民國
[35]M. Schmidt, U. Heider, A. Kuehner, R. Oesten, M. Jungnitz, N. Ignatev, P. Sartori, J. Power Sources 97–98 (2001) p.p.557.
[36]R. Oesten, U. Heider, M. Schmidt, Solid State Ionics 148 (2002) p.p.391.
[37]J.S. Gnanaraj, M.D. Levi, Y. Gofer, D. Aurbach, J. Electrochem. Soc. 150 (2003) p.p.445.
[38]K. Xu, S.S. Zhang,U.Lee, J.L.Allen, T.R. Jow, J. Power Sources 146 (2005) p.p.79.
[39]Y. Sasaki, M. Handa, K. Kurashima, T. Tonuma, K. Usami, J. Electrochem. Soc. 148 (2001) p.p.999.
[40]J. Jiang, H. Fortier, J.N. Reimers, J.R. Dahn, J. Electrochem. Soc. 151 (2004) p.p.609.
[41]J. Jiang, K. Eberman, J.R. Dahn, 12th International Meeting on Lithium Batteries, Nara, Japan, 2004 p.p.299,318,319.
[42]P.G. Balakrishnan, R. Ramesh, T. Prem Kumar Safety mechanisms in lithium-ion batteries Journal of Power Sources 155 (2006) p.p.401–414
[43]T. Allen, Particle Size Measurement, vol. 2, 5th ed.,Chapman & Hall, London, 1997, p.p.79.
[44]Y. Song, S. Yang, P.Y. Zavalij, M.S. Whittingham, Mater. Res. Bull. 37 (2002) p.p.1249.
[45] S. Yang, Y. Song, P.Y. Zavalij, M.S. Whittingham, Electrochem. Commun. 4 (2002) p.p.239.
[46]P.P. Prosini, M. Lisi, S. Scaccia, M. Carewska, F. Cardellini, M. Pasquali, J. Electrochem. Soc. 149 (2002) p.p.297.
[47]M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, J. Power Sources 97/98 (2001) p.p.508.
[48]P.P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, M. Pasquali, J. Electrochem. Soc. 149 (2002) p.p.886.
[49]W.V. Zhihong, C.U. Pittman, S.D. Gardner, Carbon 33 (1995) p.p.597.
[50]R.W. Grimes, A.N. Fitch, J. Mater. Chem. 1 (3) (1991) p.p.461.
[51]C.H. Lu, S.J. Liou, Ceram. Int. 25 (1999) p.p.431.
[52]A. Yu, N. Kumagai, Z. Liu, J.Y. Lee, J. Power Sources 74 (1998) p.p.117.
[53]Y. Wang, J. Wang, J. Yang, Y. Nuli, Adv. Funct. Mater. 16 (2006) p.p.2135.
[54]J. Yang, J.J. Xu, J. Electrochem. Soc. 153 (4) (2006) p.p.716.
[55]Silvera Scacciaa, Maria Carewskaa, Pawel Wisniewskib, Pier Paolo Prosinia Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries Materials Research Bulletin 38 (2003) p.p.1155–1163

[56]Yanning Song,Samuel Lutta, Peter Y.Zavalij and Natasha A. Chernova Some transition metal (oxy)phosphates and vanadium oxides for lithium Batteries M. Stanley Whittingham,
[57]George Ting-Kuo Fey ,Tung-Lin Lu Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid routeJournal of Power Sources 178 (2008) p.p.807–814.
[58]M.S. Bhuvaneswari, N.N. Bramnik, D. Ensling, H. Ehrenberg,W. Jaegermann “Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries” Journal of Power Sources 180 (2008) p.p.553–560
[59]C.Gerbaldi,G.Meligrana,S.Bodoardo,A.Tuelb,N.Penazzi “FePO4 nanoparticles supported on mesoporous SBA-15:Interesting cathode materials for Li-ion cells”Journal of Power Sources 174 (2007) p.p.501–507
[60]Tae-Hyung Cho, Hoon-Taek Chung “Synthesis of olivine-type LiFePO4 by emulsion-drying method” Journal of Power Sources 133 (2004) p.p.272–276
[61]Wilmont F. Howard,Robert M. Spotnitz "Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries" March 2007, p.p.887-891.
[63]P.P. Prosini, M. Lisi, S. Scaccia, M. Carewska, F. Cardellini, M. Pasquali,’’ Synthesis and Characterization of Amorphous Hydrated FePO4 and Its Electrode Performance in Lithium Batteries’’ Soc. 149 (2002) p.p.297.
[64] Helmut Ehrenberg, Natalia N. Bramnik,Anatoliy Senyshyn,Hartmut Fuess “Crystal and magnetic structures of electrochemically delithiated Li1-xCoPO4 phases“January 2009, Germany,p.p.18-23.
[65]K. Amine, H. Yasuda, and M. Yamachi, β-FeOOH, a new positive electrode material for lithium secondary batteries.Solid-State Lett., 3, 178(2000).
[66]P.S.Herle,B.Ellis, N.Coombs, N.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates(2004) p.p.147.
[67]A.Yamada,S.-C.Chung, J. “Optimized LiFePO4 for lithium battery cathodes “Electrochem. Soc. 148 (2001) p.p.960.
[68]J.B.Goodenough. “Lithium Ion Batteries:Fundametals and Performance”.NEW YORK:Jonh Wiley &Sons,Inc.1988:1.
[69]Natalia N. Bramnik,Helmut Ehrenberg,”Precursor-based synthesis and electrochemical performance of LiMnPO4”. September 2008, p.p. 259-264.
[70]Jiajun Chen a, Michael J. Vacchio, Shijun Wang ,Natalya Chernova,Peter Y. Zavalij, M. Stanley Whittingham.“The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications”.January 2008, p.p.1676-1693
[71]Sabina Beninati, Libero Damen, Marina Mastragostino.”Fast sol–gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application” Journal of Power Sources 194 (2009) p.p.1094–1098
[72]A.Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu,Y. Nishi, J. “Olivine-type cathodes: Achievements and problems” Power Sources 119 (2003) p.p.232.
[73]Miran Gaberscek, Robert Dominko, Janez Jamnik, “The meaning of impedance measurements of LiFePO4 cathodes: A linearity study” December 2007, p.p. 944-948

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top