跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許宏裕
研究生(外文):Hsu, Hung-Yu
論文名稱:染料敏化與鈣鈦礦太陽能電池的載子緩解動力學
論文名稱(外文):Relaxation and Carrier Dynamics in Dye-Sensitized and Perovskite Solar Cells
指導教授:刁維光
指導教授(外文):Diau, Wei-Guang
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:101
中文關鍵詞:染料敏化太陽能電池鈣鈦礦太陽能電池飛秒瞬態光譜電致螢光光譜飛秒螢光衰減光譜釕錯合物介面電子傳遞動力學鋅紫質激子緩解動力學
外文關鍵詞:dye-sensitized solar cellperovskite solar cellfemtosecond transient absorptionelectrophotoluminescencefemtosecond photoluminescence optical gating systemRu complexinterfacial electron transfer dynamicsZn porphyrinexciton relaxation dynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
於本論文中,將藉由飛秒瞬態吸收光譜系統、電致螢光光譜系統與飛秒螢光衰減光譜系統了解染料敏化太陽能電池與鈣鈦礦太陽能電池之電子與激子的傳遞與緩解機制。
首先,藉由飛秒紅外光瞬態吸收光譜系統,討論含有苯並咪唑取代基之釕錯合物染料 (RD5、RD12、RD15 – RD18) 吸附於二氧化鈦半導體表面之介面電子傳遞動力學,藉由二能階模型擬和可以得到此系統間跨越的速率受釕錯合物之氟取代基與噻吩取代基的數量增加而減緩。
第二部分為藉由電致螢光光譜了解鋅紫質染料的電荷分離程度。於本實驗中量測三種高效率之鋅紫質染料 (YD2、YD2-oC8 與YD30) 吸附於二氧化鈦表面或混參於 PMMA 之電致螢光光譜。於兩種薄膜系統中,均可觀察到具推拉電子基之 YD2 與 YD2-oC8 的螢光受外加電場影響而淬息,但無推電子取代基之 YD30 則有螢光增強的現象。此淬息現象應為染料之電荷分離態受電場影響而穩定後,激發態之電子可傳遞之電荷分離態進而注入二氧化鈦之導帶;相對而言,無推電子取代基之YD30 的電荷分離程度較差,即使外加電場仍舊無法將激發態電子傳遞之電荷分離態,且外加電場可有效減緩非放光途徑之緩解,而有螢光增強之現象。
第三部分為鈣鈦礦之激子緩解動力學。於此,藉由飛秒螢光上轉移光閘系統量測鈣鈦礦於氧化鋁或氧化鎳表面,藉由複合之連續動力學模型解析鈣鈦礦之 670 – 810 nm 的時間解析螢光光譜,於所有偵測波長均可擬和得到一高能態與二低能態之緩解過程。而藉由氧化鋁與氧化鎳之比較,可以得知鈣鈦礦與氧化鎳間之電洞傳輸生命期約為五奈秒,此傳輸速率仍快於其他緩解途徑,而具有極高之光電轉換效率。
Femtosecond infrared transient absorption spectral technique (IRTA), electrophotoluminescence measurement (E-PL), and femtosecond photoluminescence optical gating system (FOG) were used to investigate the electron transfer dynamics for dye-sensitized solar cells and perovskite based thin film solar cells. By means of IRTA, interfacial electron transfer dynamics for a series of benzimidazole-based heteroleptic ruthenium dyes sensitized on TiO2 thin films. Ru dyes substituted with fluorine atoms and/or thiophene units in the benzimidazole ligands showed an effect to retard the 3MLCT electron injection compared to that of the non-substituted dye. Porphyrin sensitizers either sensitized on TiO2 films or embedded in PMMA films were investigated using E-PL spectra. A non-fluorescent state with charge separation is proposed to be involved in push-pull systems so that the electron injection becomes accelerated in the presence of a strong electric field. The excitonic relaxation dynamics of perovskite adsorbed on mesoporous thin films of Al2O3 and NiO were investigated with FOG. The temporal profiles of emission were described satisfactorily with a composite consecutive kinetic model and three transient components representing one hot and two cold excitonic relaxations.
Chapter 1. Introduction......1
1.1 Introduction of Dye-Sensitized Solar Cells......1
1.2 Perovskite-Based Solar Cell......3
1.3 Femtosecond Photo-Induced Chemical Reaction......4
1.4 Reference......6
Chapter 2. Experimental Setup and Theory......8
2.1 Femtosecond Visible Pumped/Infrared Probed Transient Absorption Spectroscopy......8
2.1.1 Pump-probe method......9
2.1.2 Experimental Setup of Transient Absorption Spectroscopy......11
2.1.2.1 Ultrafast Laser System......11
2.1.2.2 Optical Parametric Amplifier......12
2.1.2.2.1 Theory of Optical Parametric Amplifier......12
2.1.2.2.2 Traveling-Wave Optical Parametric Amplifier of White-Light Continuum......14
2.1.2.3 Detected System......15
2.1.2.3.1 Monochromator......15
2.1.2.3.2 Infrared Detected Array......16
2.1.2.3.3 Multi-Channel Laser Pulse Integrator System......16
2.1.2.4 Experimental Setup......16
2.2 Electrophotoluminescence Measurement......19
2.2.1 Electrophotoluminescence theory......19
2.2.2 Measurement System of Electrophotoluminescence......25
2.3 Femtosecond Fluorescence Up-Conversion Technique......26
2.3.1 Up-Conversion Theory......26
2.3.2 Experimental Setup of Fluorescence Up-Conversion Technique......28
2.3.2.1 Femtosecond Laser System......28
2.3.2.2 Experimental Setup......28
2.4 Data Analysis......30
2.4.1 Two-Step Model......30
2.4.2 Exciton Relaxation Model......32
2.5 Reference......36
Chapter 3. Femtosecond Infrared Transient Absorption Dynamics of Benzimidazole-Based Ruthenium Complexes on TiO2 Films for Dye-Sensitized Solar Cells......38
3.1 Introduction......38
3.2 Experimental Section......40
3.3 Results and Discussion......41
3.4 Conclusion......54
3.5 References......55
Chapter 4. Field-Induced Fluorescence Quenching and Enhancement of Porphyrin Sensitizers on TiO2 Films and in PMMA Films......60
4.1 Introduction......60
4.2 Experimental Section......61
4.3 Results and Discussion......63
4.4 Conclusion......73
4.5 References......74
Chapter 5. Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al2O3 and NiO Nanoparticles......78
5.1 Introduction......78
5.2 Experimental Section......79
5.3 Results and Discussion......80
5.4 Conclusion......96
5.5 References......97
Chapter 6. Conclusion......100
(1) Kamat, P. V; Tvrdy, K.; Baker, D. R.; Radich, J. G. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chem. Rev. 2010, 110, 6664–6688.
(2) Martínez-Díaz, M. V.; de la Torre, G.; Torres, T. Lighting Porphyrins and Phthalocyanines for Molecular Photovoltaics. Chem. Commun. 2010, 46, 7090–7108.
(3) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663.
(4) Ning, Z.; Fu, Y.; Tian, H. Improvement of Dye-Sensitized Solar Cells: What We Know and What We Need to Know. Energy Environ. Sci. 2010, 3, 1170–1181.
(5) Li, L.-L.; Diau, E. W.-G. Porphyrin-Sensitized Solar Cells. Chem. Soc. Rev. 2013, 42, 291–304.
(6) Vougioukalakis, G. C.; Philippopoulos, A. I.; Stergiopoulos, T.; Falaras, P. Contributions to the Development of Ruthenium-Based Sensitizers for Dye-Sensitized Solar Cells. Coord. Chem. Rev. 2011, 255, 2602–2621.
(7) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835–16847.
(8) Wang, Q.; Ito, S.; Gra, M.; Fabregat-santiago, F.; Bisquert, J.; Bessho, T.; Imai, H. Characteristics of High Efficiency Dye-Sensitized Solar Cells. J. Phys. Chem. B 2006, 110, 25210–25221.
(9) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634.
(10) Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. Il. o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic-Organic Hybrid Perovskite Solar Cells. J. Am. Chem. Soc. 2014, 136, 7837–7840.
(11) Yagi, E.; Hasiguti, R.; Aono, M. Electronic Conduction above 4 K of Slightly Reduced Oxygen-Deficient Rutile TiO2-X. Phys. Rev. B. Condens. Matter 1996, 54, 7945–7956.
(12) Jarzebski, Z. M.; Marton, J. P. Physical Properties of SnO2 Materials II. Electrical Properties. J. Electrochem. Soc. 1976, 123, 299C–310C.
(13) Look, D. C.; Reynolds, D. C.; Sizelove, J. R.; Jones, R. L.; Litton, C. W.; Cantwell, G.; Harsch, W. C. Electrical Properties of Bulk ZnO. Solid State Commun. 1998, 105, 399–401.
(14) Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Electron Mobility and Injection SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano 2011, 5, 5158–5166.
(15) Jovanovski, V.; González-Pedro, V.; Giménez, S.; Azaceta, E.; Cabañero, G.; Grande, H.; Tena-Zaera, R.; Mora-Seró, I.; Bisquert, J. A Sulfide/polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2011, 133, 20156–20159.
(16) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
(17) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591.
(18) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647.
(19) Wang, K.-C.; Jeng, J.-Y.; Shen, P.-S.; Chang, Y.-C.; Diau, E. W.-G.; Tsai, C.-H.; Chao, T.-Y.; Hsu, H.-C.; Lin, P.-Y.; Chen, P.; et al. p-Type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci. Rep. 2014, 4, 4756.
(20) Zewail, A. H. Femtochemistry: AtomicScale Dynamics of the Chemical Bond Using Ultrafast Laster. Angew. Chemie Int. ed. 2000, 39, 2586–2631.
(21) RulliEre, C.; Amand, T.; Marie, X. Femtosecond Laser Pulses: Principles and Experiments; Rulliere, C., Ed.; 2nd ed.; Springer: Berlin, 2004; p. 223.
(22) Pankove, J. I. Optical Processes in Semiconductors; Courier Dover: New York, 1975.
(23) Jalviste, E.; Ohta, N. Theoretical Foundation of Electroabsorption Spectroscopy: Self-Contained Derivation of the Basic Equations with the Direction Cosine Method and the Euler Angle Method. J. Photochem. Photobiol. C Photochem. Rev. 2007, 8, 30–46.
(24) Bublitz, G. U.; Boxer, S. G. Stark Spectroscopy: Applications in Chemistry, Biology, and Materials Science. Annu. Rev. Phys. Chem. 1997, 48, 213–242.
(25) Zare, R. N. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics; Wiley: New York, 1988.
(26) Ohta, N. Electric Field Effects on Photochemical Dynamics in Solid Films. Bull. Chem. Soc. Jpn. 2002, 75, 1637–1655.
(27) Neumann, M.; Herten, D.-P.; Sauer, M. New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences; Valeur, B.; Brochon, J.-C., Eds.; Springer: Berlin, 2001; p. 303.
(28) Tachibana, Y.; Moser, J. E.; Gra, M.; Klug, D. R.; Durrant, J. R.; Fe, Ä. P. Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. 1996, 100, 20056–20062.
(29) Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian, T. Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2 in Solution and on Nanocrystalline TiO2 and Al2O3 Thin Films. J. Phys. Chem. B 1999, 103, 3110–3119.
(30) Asbury, J. B.; Hao, E.; Wang, Y.; Ghosh, H. N.; Lian, T.; V, E. U. Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films. J. Phys. Chem. B 2001, 105, 4545–4557.
(31) Kallioinen, J.; Benkö, G.; Myllyperkiö, P.; Khriachtchev, L.; Skårman, B.; Wallenberg, R.; Tuomikoski, M.; Korppi-Tommola, J.; Sundström, V.; Yartsev, A. P. Photoinduced Ultrafast Dynamics of Ru(dcbpy)2(NCS)2-Sensitized Nanocrystalline TiO2 Films: The Influence of Sample Preparation and Experimental Conditions. J. Phys. Chem. B 2004, 108, 6365–6373.
(32) Ai, X.; Guo, J.; Anderson, N. A.; Lian, T.; V, E. U. Ultrafast Electron Transfer from Ru Polypyridyl Complexes to Nb2O5 Nanoporous Thin Films. J. Phys. Chem. B 2004, 108, 12795–12803.
(33) Guo, J.; She, C.; Lian, T.; V, E. U. Effect of Insulating Oxide Overlayers on Electron Injection Dynamics in Dye-Sensitized Nanocrystalline Thin Films. J. Phys. Chem. C 2007, 111, 8979–8987.
(34) Pijpers, J. J. H.; Ulbricht, R.; Derossi, S.; Reek, J. N. H.; Bonn, M. Picosecond Electron Injection Dynamics in Dye-Sensitized Oxides in the Presence of Electrolyte. J. Phys. Chem. C 2011, 115, 2578–2584.
(35) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347.
(36) Yu, Q.; Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.; Wang, P. High-Efficiency Dye-Sensitized Solar Cells : The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. ACS Nano 2010, 4, 6032–6038.
(37) Imahori, H.; Umeyama, T.; Ito, S. Large Pi-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1809–1818.
(38) Ning, Z.; Tian, H. Triarylamine: A Promising Core Unit for Efficient Photovoltaic Materials. Chem. Commun. 2009, 5483–5495.
(39) Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chem. Mater. 2010, 1915–1925.
(40) Huang, W.; Wu, H.; Lin, P.; Lee, Y.; Diau, E. W. Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Fluorine Substituents on Photovoltaic Performance. J. Phys. Chem. Lett. 2012, 3, 1830–1835.
(41) Huang, W.; Wu, H.; Lin, P.; Diau, E. W. Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Thiophene and Alkyl Substituents on Photovoltaic Performance. J. Phys. Chem. C 2013, 117, 2059–2065.
(42) Banerjee, T.; Kaniyankandy, S.; Das, A.; Ghosh, H. N. Newly Designed Resorcinolate Binding for Ru (II) − and Re (I) − Polypyridyl Complexes on Oleic Acid Capped TiO2 in Nonaqueous Solvent : Prolonged Charge Separation and Substantial Thermalized MLCT Injection. J. Phys. Chem. C 2013, 117, 3084–3092.
(43) Huang, J.; Buyukcakir, O.; Mara, M. W.; Coskun, A.; Dimitrijevic, N. M.; Barin, G.; Kokhan, O.; Stickrath, A. B.; Ruppert, R.; Tiede, D. M.; et al. Highly Efficient Ultrafast Electron Injection from the Singlet MLCT Excited State of copper(I) Diimine Complexes to TiO2 Nanoparticles. Angew. Chem. Int. Ed. Engl. 2012, 51, 12711–12715.
(44) Miguel, G. De; Marchena, M.; Zio, M.; Pandey, S. S.; Hayase, S.; Douhal, A. Femto- to Millisecond Photophysical Characterization of Indole- Based Squaraines Adsorbed on TiO2 Nanoparticle Thin Films. J. Phys. Chem. C 2012, 116, 12137–12148.
(45) Oum, K.; Lohse, P. W.; Flender, O.; Klein, J. R.; Scholz, M.; Lenzer, T.; Du, J.; Oekermann, T. Ultrafast Dynamics of the Indoline Dye D149 on Electrodeposited ZnO and Sintered ZrO2 and TiO2 Thin Films. Phys. Chem. Chem. Phys. 2012, 14, 15429–15437.
(46) Santra, P. K.; Nair, P. V.; Thomas, K. G.; Kamat, P. V. CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance. J. Phys. Chem. Lett. 2013, 4, 722–729.
(47) Sunahara, K.; Furube, A.; Katoh, R.; Mori, S.; Gri, M. J.; Wallace, G. G.; Wagner, P.; David, L. O.; Mozer, A. J. Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the Efficiency. 2011, 115, 22084–22088.
(48) Imahori, H.; Kang, S.; Hayashi, H.; Haruta, M.; Kurata, H.; Isoda, S.; Canton, S. E.; Infahsaeng, Y.; Kathiravan, A.; Pascher, T.; et al. Photoinduced Charge Carrier Dynamics of Zn-Porphyrin-TiO2 Electrodes: The Key Role of Charge Recombination for Solar Cell Performance. J. Phys. Chem. A 2011, 115, 3679–3690.
(49) Watson, D. F.; Meyer, G. J. Electron Injection at Dye-Sensitized Semiconductor Electrodes. Annu. Rev. Phys. Chem. 2005, 56, 119–156.
(50) Anderson, N. a; Lian, T. Ultrafast Electron Transfer at the Molecule-Semiconductor Nanoparticle Interface. Annu. Rev. Phys. Chem. 2005, 56, 491–519.
(51) Listorti, A.; O’Regan, B.; Durrant, J. R. Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chem. Mater. 2011, 23, 3381–3399.
(52) Bräm, O.; Cannizzo, A.; Chergui, M. Ultrafast Fluorescence Studies of Dye Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2012, 43, 7934–7937.
(53) Pellnor, M.; Myllyperkiö, P.; Korppi-Tommola, J.; Yartsev, a.; Sundström, V. Photoinduced Interfacial Electron Injection in RuN3–TiO2 Thin Films: Resolving Picosecond Timescale Injection from the Triplet State of the Protonated and Deprotonated Dyes. Chem. Phys. Lett. 2008, 462, 205–208.
(54) Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Pechy, P.; Grätzel, M. Fabrication of Screen‐printing Pastes from TiO2 Powders for Dye‐sensitised Solar Cells. Prog. Photovoltaics Res. Appl. 2007, 15, 603–612.
(55) Wu, H.; Lan, C.; Hu, J.; Huang, W.; Shiu, J.; Lan, Z.; Tsai, C.; Su, C.; Diau, E. W. Hybrid Titania Photoanodes with a Nanostructured Multi-Layer Configuration for Highly Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. Lett. 2013, 4, 1570–1577.
(56) Ellingson, R. J.; Asbury, J. B.; Ferrere, S.; Ghosh, H. N.; Sprague, J. R.; Lian, T.; Nozik, A. J. Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4’-Dicarboxy-2,2'-bipyridine)2(NCS)2] by Infrared Transient Absorption. J. Phys. Chem. B 1998, 2, 6455–6458.
(57) Kallioinen, J.; Korppi-tommola, J. E. I.; Yartsev, A. P.; Sundstro, V. Photoinduced Ultrafast Dye-to-Semiconductor Electron Injection from Nonthermalized and Thermalized Donor States. 2002, 124, 489–493.
(58) Asbury, J. B.; Anderson, N. A.; Hao, E.; Ai, X.; Lian, T.; V, E. U. Parameters Affecting Electron Injection Dynamics from Ruthenium Dyes to Titanium Dioxide Nanocrystalline Thin Film. J. Phys. Chem. B 2003, 3, 7376–7386.
(59) Verma, S.; Kar, P.; Das, A.; Palit, D. K.; Ghosh, H. N. The Effect of Heavy Atoms on Photoinduced Electron Injection from Nonthermalized and Thermalized Donor States of M(II)-Polypyridyl (M=Ru/Os) Complexes to Nanoparticulate TiO2 Surfaces: An Ultrafast Time-Resolved Absorption Study. Chem. - A Eur. J. 2010, 16, 611–619.
(60) Katoh, R.; Furube, A.; Fuke, N.; Fukui, A.; Koide, N. Ultrafast Relaxation as a Possible Limiting Factor of Electron Injection Efficiency in Black Dye Sensitized Nanocrystalline TiO2 Films. J. Phys. Chem. C 2012, 116, 22301–22306.
(61) Hung, C. Effects of Porphyrinic Meso-Substituents on the Photovoltaic Performance of Dye-Sensitized Solar Cells: Number and Position of p-Carboxyphenyl and Thienyl Groups on Zinc Porphyrins. J. Phys. Chem. C 2012, 116, 11907.
(62) Gao, Y. Q.; Georgievskii, Y.; Marcus, R. a. On the Theory of Electron Transfer Reactions at Semiconductor Electrode/liquid Interfaces. J. Chem. Phys. 2000, 112, 3358–3369.
(63) Kittel, C. Introduction to Solid State Physics; 8th ed.; Wiley: New York,U.S., 2004.
(64) Huang, J.; Stockwell, D.; Boulesbaa, A.; Guo, J.; Lian, T. Comparison of Electron Injection Dynamics from Rhodamine B to In2O3, SnO2, and ZnO Nanocrystalline Thin Films. J. Phys. Chem. C 2008, 112, 5203–5212.
(65) Ai, X.; Anderson, N. a; Guo, J.; Lian, T. Electron Injection Dynamics of Ru Polypyridyl Complexes on SnO2 Nanocrystalline Thin Films. J. Phys. Chem. B 2005, 109, 7088–7094.
(66) Anderson, N. a.; Lian, T. Ultrafast Electron Injection from Metal Polypyridyl Complexes to Metal-Oxide Nanocrystalline Thin Films. Coord. Chem. Rev. 2004, 248, 1231–1246.
(67) Katoh, R.; Furube, A.; Barzykin, A. V.; Arakawa, H.; Tachiya, M. Kinetics and Mechanism of Electron Injection and Charge Recombination in Dye-Sensitized Nanocrystalline Semiconductors. Coord. Chem. Rev. 2004, 248, 1195–1213.
(68) Zhang, G.; Bala, H.; Cheng, Y.; Shi, D.; Lv, X.; Yu, Q.; Wang, P. High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer. Chem. Commun. 2009, 2198–2200.
(69) Maiti, N. C.; Mazumdar, S.; Periasamy, N. J- and H-Aggregates of Porphyrin - Surfactant Complexes: Time-Resolved Fluorescence and Other Spectroscopic Studies. J. Phys. Chem. B 1998, 102, 1528–1538.
(70) Aggarwal, L. P. F.; Borissevitch, I. E. On the Dynamics of the TPPS4 Aggregation in Aqueous Solutions: Successive Formation of H and J Aggregates. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2006, 63, 227–233.
(71) Lee, C.-W.; Lu, H.-P.; Lan, C.-M.; Huang, Y.-L.; Liang, Y.-R.; Yen, W.-N.; Liu, Y.-C.; Lin, Y.-S.; Diau, E. W.-G.; Yeh, C.-Y. Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties. Chem. - A Eur. J. 2009, 15, 1403–1412.
(72) Lu, H.-P.; Tsai, C.-Y.; Yen, W.-N.; Hsieh, C.-P.; Lee, C.-W.; Yeh, C.-Y.; Diau, E. W.-G. Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate. J. Phys. Chem. C 2009, 113, 20990–20997.
(73) Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Grätzel, M. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins. Angew. Chemie Int. ed. 2010, 49, 6646–6649.
(74) Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo, H.-H.; Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G. A Strategy to Design Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. Chem. Commun. 2011, 47, 8910–8912.
(75) Wang, C.-L.; Lan, C.-M.; Hong, S.-H.; Wang, Y.-F.; Pan, T.-Y.; Chang, C.-W.; Kuo, H.-H.; Kuo, M.-Y.; Diau, E. W.-G.; Lin, C.-Y. Enveloping Porphyrins for Efficient Dye-Sensitized Solar Cells. Energy Environ. Sci. 2012, 5, 6933–6940.
(76) Zdyb, A.; Krawczyk, S. Molecule-Solid Interaction: Electronic States of Anthracene-9-Carboxylic Acid Adsorbed on the Surface of TiO2. Appl. Surf. Sci. 2010, 256, 4854–4858.
(77) Zdyb, A. Electronic Excited States of Carotenoid Dyes Adsorbed on TiO2. J. Phys. Chem. C 2011, 115, 22328–22335.
(78) Jalviste, E.; Ohta, N. Stark Absorption Spectroscopy of Indole and 3-Methylindole. J. Chem. Phys. 2004, 121, 4730–4739.
(79) Mehata, M. S.; Iimori, T.; Yoshizawa, T.; Ohta, N. Electroabsorption Spectroscopy of 6-Hydroxyquinoline Doped in Polymer Films: Stark Shifts and Orientational Effects. J. Phys. Chem. A 2006, 110, 10985–10991.
(80) Mehata, M. S.; Hsu, C.; Lee, Y.; Ohta, N. Electric Field Effects on Photoluminescence of Polyfluorene Thin Films: Dependence on Excitation Wavelength, Field Strength, and Temperature. J. Phys. Chem. C 2009, 113, 11907–11915.
(81) Ardo, S.; Sun, Y.; Castellano, F. N.; Meyer, G. J. Excited-State Electron Transfer from Ruthenium-Polypyridyl Compounds to Anatase TiO2 Nanocrystallites: Evidence for a Stark Effect. J. Phys. Chem. B 2010, 114, 14596–14604.
(82) Pastore, M.; Angelis, F. De. Computational Modeling of Stark Effects in Organic Dye-Sensitized TiO2 Heterointerfaces. J. Phys. Chem. Lett. 2011, 2, 1261–1267.
(83) Cappel, U. B.; Feldt, S. M.; Schöneboom, J.; Hagfeldt, A.; Boschloo, G. The Influence of Local Electric Fields on Photoinduced Absorption in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2010, 132, 9096–9101.
(84) Hsu, H.; Chiang, H.; Hu, J.; Awasthi, K.; Mai, C.; Yeh, C.; Ohta, N.; Diau, E. W. Field-Induced Fluorescence Quenching and Enhancement of Porphyrin Sensitizers on TiO2 Films and in PMMA Films. J. Phys. Chem. C 2013, 117, 24761–24766.
(85) Umeuchi, S.; Nishimura, Y.; Yamazaki, I.; Murakami, H.; Yamashita, M.; Ohta, N. Electric Field Effects on Absorption and Fluorescence Spectra of Pyrene Doped in a PMMA Polymer Film. solid Film. 1997, 311, 239–245.
(86) Luo, L.; Lo, C.-F.; Lin, C.-Y.; Chang, I.-J.; Diau, E. W.-G. Femtosecond Fluorescence Dynamics of Porphyrin in Solution and Solid Films: The Effects of Aggregation and Interfacial Electron Transfer between Porphyrin and TiO2. J. Phys. Chem. B 2006, 110, 410–419.
(87) Kubo, M.; Mori, Y.; Otani, M.; Murakami, M.; Ishibashi, Y.; Yasuda, M.; Hosomizu, K.; Miyasaka, H.; Imahori, H.; Nakashima, S. Ultrafast Photoinduced Electron Transfer in Directly Linked Porphyrin-Ferrocene Dyads. J. Phys. Chem. A 2007, 111, 5136–5143.
(88) Nakabayashi, T.; Wu, B.; Morikawa, T.; Iimori, T.; Rubin, M. B.; Speiser, S.; Ohta, N. External Electric Field Effects on Absorption and Fluorescence of Anthracene-(CH2)n-Naphthalene Bichromophoric Molecules Doped in a Polymer Film. J. Photochem. Photobiol. A Chem. 2006, 178, 236–241.
(89) Iwaki, Y.; Ohta, N. Electric-Field-Induced Quenching of Fluorescence of Tetraphenylporphyrin in a PMMA Polymer Film. Chem. Lett. 2000, 894–895.
(90) Mehata, M. S.; Hsu, C.; Lee, Y.; Ohta, N. Electroabsorption and Electrophotoluminescence of Poly(2,3-Diphenyl-5-Hexyl-P-Phenylene Vinylene). J. Phys. Chem. C 2012, 116, 14789–14795.
(91) Lockhart, D. J.; Hammes, S. L.; Franzen, S.; Boxer, S. C. Electric Fieid Effects on Emission Line Shapes When Electron Transfer Competes With Emission: An Example from Photosynthetic Reaction Centers. J. Phys. Chem. 1991, 95, 2217–2226.
(92) León, C. P.; Kador, L.; Peng, B.; Thelakkat, M. Characterization of the Adsorption of Ru-Bpy Dyes on Mesoporous TiO2 Films with UV-Vis, Raman, and FTIR Spectroscopies. J. Phys. Chem. B 2006, 110, 8723–8730.
(93) Angelis, F. De; Fantacci, S.; Mosconi, E.; Nazeeruddin, M. K.; Grätzel, M. Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models. J. Phys. Chem. C 2011, 115, 8825–8831.
(94) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316–319.
(95) Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395–398.
(96) Liu, D.; Kelly, T. L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nat. Photonics 2013, 8, 133–138.
(97) Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. a; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; et al. Low-Temperature Processed Electron Collection Layers of graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett. 2014, 14, 724–730.
(98) Rhee, J. H.; Chung, C.-C.; Diau, E. W.-G. A Perspective of Mesoscopic Solar Cells Based on Metal Chalcogenide Quantum Dots and Organometal-Halide Perovskites. NPG Asia Mater. 2013, 5, e68.
(99) Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost , High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623.
(100) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.
(101) Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C. CH3NH3PbI3 Perovskite/fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732.
(102) Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates. Nat. Commun. 2013, 4, 2761.
(103) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344.
(104) Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584–1589.
(105) Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.; Grätzel, M.; Moser, J.-E. Unravelling the Mechanism of Photoinduced Charge Transfer Processes in Lead Iodide Perovskite Solar Cells. Nat. Photonics 2014, 8, 250–255.
(106) Roiati, V.; Colellad, S.; Lerario, G.; Marco, L. De; Rizzo, A.; Listorti, A.; Gigli, G. Investigating Charge Dynamics in Halide Perovskite- Sensitized Mesostructured Solar Cells. Energy Environ. Sci. 2014, 7, 1889–1894.
(107) Burn, P. L.; Meredith, P. The Rise of the Perovskites: The Future of Low Cost Solar Photovoltaics? NPG Asia Mater. 2014, 6, e79.
(108) Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy Environ. Sci. 2013, 6, 1739.
(109) Klimov, V. I. Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.
(110) Lu, Y.-C.; Chang, C.-W.; Diau, E. W.-G. Femtosecond Fluorescence Dynamics of Trans-Azobenzene in Hexane on Excitation to the S1 (n, π*) State. J. Chinese Chem. Soc. 2002, 49, 693–701.
(111) Schaller, R. D.; Agranovich, V. M.; Klimov, V. I. High-Efficiency Carrier Multiplication through Direct Photogeneration of Multi-Excitons via Virtual Single-Exciton States. Nat. Phys. 2005, 1, 189–194.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊