|
(1) Kamat, P. V; Tvrdy, K.; Baker, D. R.; Radich, J. G. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chem. Rev. 2010, 110, 6664–6688. (2) Martínez-Díaz, M. V.; de la Torre, G.; Torres, T. Lighting Porphyrins and Phthalocyanines for Molecular Photovoltaics. Chem. Commun. 2010, 46, 7090–7108. (3) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. (4) Ning, Z.; Fu, Y.; Tian, H. Improvement of Dye-Sensitized Solar Cells: What We Know and What We Need to Know. Energy Environ. Sci. 2010, 3, 1170–1181. (5) Li, L.-L.; Diau, E. W.-G. Porphyrin-Sensitized Solar Cells. Chem. Soc. Rev. 2013, 42, 291–304. (6) Vougioukalakis, G. C.; Philippopoulos, A. I.; Stergiopoulos, T.; Falaras, P. Contributions to the Development of Ruthenium-Based Sensitizers for Dye-Sensitized Solar Cells. Coord. Chem. Rev. 2011, 255, 2602–2621. (7) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835–16847. (8) Wang, Q.; Ito, S.; Gra, M.; Fabregat-santiago, F.; Bisquert, J.; Bessho, T.; Imai, H. Characteristics of High Efficiency Dye-Sensitized Solar Cells. J. Phys. Chem. B 2006, 110, 25210–25221. (9) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. (10) Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. Il. o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic-Organic Hybrid Perovskite Solar Cells. J. Am. Chem. Soc. 2014, 136, 7837–7840. (11) Yagi, E.; Hasiguti, R.; Aono, M. Electronic Conduction above 4 K of Slightly Reduced Oxygen-Deficient Rutile TiO2-X. Phys. Rev. B. Condens. Matter 1996, 54, 7945–7956. (12) Jarzebski, Z. M.; Marton, J. P. Physical Properties of SnO2 Materials II. Electrical Properties. J. Electrochem. Soc. 1976, 123, 299C–310C. (13) Look, D. C.; Reynolds, D. C.; Sizelove, J. R.; Jones, R. L.; Litton, C. W.; Cantwell, G.; Harsch, W. C. Electrical Properties of Bulk ZnO. Solid State Commun. 1998, 105, 399–401. (14) Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Electron Mobility and Injection SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano 2011, 5, 5158–5166. (15) Jovanovski, V.; González-Pedro, V.; Giménez, S.; Azaceta, E.; Cabañero, G.; Grande, H.; Tena-Zaera, R.; Mora-Seró, I.; Bisquert, J. A Sulfide/polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2011, 133, 20156–20159. (16) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. (17) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. (18) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647. (19) Wang, K.-C.; Jeng, J.-Y.; Shen, P.-S.; Chang, Y.-C.; Diau, E. W.-G.; Tsai, C.-H.; Chao, T.-Y.; Hsu, H.-C.; Lin, P.-Y.; Chen, P.; et al. p-Type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci. Rep. 2014, 4, 4756. (20) Zewail, A. H. Femtochemistry: AtomicScale Dynamics of the Chemical Bond Using Ultrafast Laster. Angew. Chemie Int. ed. 2000, 39, 2586–2631. (21) RulliEre, C.; Amand, T.; Marie, X. Femtosecond Laser Pulses: Principles and Experiments; Rulliere, C., Ed.; 2nd ed.; Springer: Berlin, 2004; p. 223. (22) Pankove, J. I. Optical Processes in Semiconductors; Courier Dover: New York, 1975. (23) Jalviste, E.; Ohta, N. Theoretical Foundation of Electroabsorption Spectroscopy: Self-Contained Derivation of the Basic Equations with the Direction Cosine Method and the Euler Angle Method. J. Photochem. Photobiol. C Photochem. Rev. 2007, 8, 30–46. (24) Bublitz, G. U.; Boxer, S. G. Stark Spectroscopy: Applications in Chemistry, Biology, and Materials Science. Annu. Rev. Phys. Chem. 1997, 48, 213–242. (25) Zare, R. N. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics; Wiley: New York, 1988. (26) Ohta, N. Electric Field Effects on Photochemical Dynamics in Solid Films. Bull. Chem. Soc. Jpn. 2002, 75, 1637–1655. (27) Neumann, M.; Herten, D.-P.; Sauer, M. New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences; Valeur, B.; Brochon, J.-C., Eds.; Springer: Berlin, 2001; p. 303. (28) Tachibana, Y.; Moser, J. E.; Gra, M.; Klug, D. R.; Durrant, J. R.; Fe, Ä. P. Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. 1996, 100, 20056–20062. (29) Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian, T. Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2 in Solution and on Nanocrystalline TiO2 and Al2O3 Thin Films. J. Phys. Chem. B 1999, 103, 3110–3119. (30) Asbury, J. B.; Hao, E.; Wang, Y.; Ghosh, H. N.; Lian, T.; V, E. U. Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films. J. Phys. Chem. B 2001, 105, 4545–4557. (31) Kallioinen, J.; Benkö, G.; Myllyperkiö, P.; Khriachtchev, L.; Skårman, B.; Wallenberg, R.; Tuomikoski, M.; Korppi-Tommola, J.; Sundström, V.; Yartsev, A. P. Photoinduced Ultrafast Dynamics of Ru(dcbpy)2(NCS)2-Sensitized Nanocrystalline TiO2 Films: The Influence of Sample Preparation and Experimental Conditions. J. Phys. Chem. B 2004, 108, 6365–6373. (32) Ai, X.; Guo, J.; Anderson, N. A.; Lian, T.; V, E. U. Ultrafast Electron Transfer from Ru Polypyridyl Complexes to Nb2O5 Nanoporous Thin Films. J. Phys. Chem. B 2004, 108, 12795–12803. (33) Guo, J.; She, C.; Lian, T.; V, E. U. Effect of Insulating Oxide Overlayers on Electron Injection Dynamics in Dye-Sensitized Nanocrystalline Thin Films. J. Phys. Chem. C 2007, 111, 8979–8987. (34) Pijpers, J. J. H.; Ulbricht, R.; Derossi, S.; Reek, J. N. H.; Bonn, M. Picosecond Electron Injection Dynamics in Dye-Sensitized Oxides in the Presence of Electrolyte. J. Phys. Chem. C 2011, 115, 2578–2584. (35) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347. (36) Yu, Q.; Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.; Wang, P. High-Efficiency Dye-Sensitized Solar Cells : The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. ACS Nano 2010, 4, 6032–6038. (37) Imahori, H.; Umeyama, T.; Ito, S. Large Pi-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1809–1818. (38) Ning, Z.; Tian, H. Triarylamine: A Promising Core Unit for Efficient Photovoltaic Materials. Chem. Commun. 2009, 5483–5495. (39) Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y. Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chem. Mater. 2010, 1915–1925. (40) Huang, W.; Wu, H.; Lin, P.; Lee, Y.; Diau, E. W. Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Fluorine Substituents on Photovoltaic Performance. J. Phys. Chem. Lett. 2012, 3, 1830–1835. (41) Huang, W.; Wu, H.; Lin, P.; Diau, E. W. Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Thiophene and Alkyl Substituents on Photovoltaic Performance. J. Phys. Chem. C 2013, 117, 2059–2065. (42) Banerjee, T.; Kaniyankandy, S.; Das, A.; Ghosh, H. N. Newly Designed Resorcinolate Binding for Ru (II) − and Re (I) − Polypyridyl Complexes on Oleic Acid Capped TiO2 in Nonaqueous Solvent : Prolonged Charge Separation and Substantial Thermalized MLCT Injection. J. Phys. Chem. C 2013, 117, 3084–3092. (43) Huang, J.; Buyukcakir, O.; Mara, M. W.; Coskun, A.; Dimitrijevic, N. M.; Barin, G.; Kokhan, O.; Stickrath, A. B.; Ruppert, R.; Tiede, D. M.; et al. Highly Efficient Ultrafast Electron Injection from the Singlet MLCT Excited State of copper(I) Diimine Complexes to TiO2 Nanoparticles. Angew. Chem. Int. Ed. Engl. 2012, 51, 12711–12715. (44) Miguel, G. De; Marchena, M.; Zio, M.; Pandey, S. S.; Hayase, S.; Douhal, A. Femto- to Millisecond Photophysical Characterization of Indole- Based Squaraines Adsorbed on TiO2 Nanoparticle Thin Films. J. Phys. Chem. C 2012, 116, 12137–12148. (45) Oum, K.; Lohse, P. W.; Flender, O.; Klein, J. R.; Scholz, M.; Lenzer, T.; Du, J.; Oekermann, T. Ultrafast Dynamics of the Indoline Dye D149 on Electrodeposited ZnO and Sintered ZrO2 and TiO2 Thin Films. Phys. Chem. Chem. Phys. 2012, 14, 15429–15437. (46) Santra, P. K.; Nair, P. V.; Thomas, K. G.; Kamat, P. V. CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance. J. Phys. Chem. Lett. 2013, 4, 722–729. (47) Sunahara, K.; Furube, A.; Katoh, R.; Mori, S.; Gri, M. J.; Wallace, G. G.; Wagner, P.; David, L. O.; Mozer, A. J. Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the Efficiency. 2011, 115, 22084–22088. (48) Imahori, H.; Kang, S.; Hayashi, H.; Haruta, M.; Kurata, H.; Isoda, S.; Canton, S. E.; Infahsaeng, Y.; Kathiravan, A.; Pascher, T.; et al. Photoinduced Charge Carrier Dynamics of Zn-Porphyrin-TiO2 Electrodes: The Key Role of Charge Recombination for Solar Cell Performance. J. Phys. Chem. A 2011, 115, 3679–3690. (49) Watson, D. F.; Meyer, G. J. Electron Injection at Dye-Sensitized Semiconductor Electrodes. Annu. Rev. Phys. Chem. 2005, 56, 119–156. (50) Anderson, N. a; Lian, T. Ultrafast Electron Transfer at the Molecule-Semiconductor Nanoparticle Interface. Annu. Rev. Phys. Chem. 2005, 56, 491–519. (51) Listorti, A.; O’Regan, B.; Durrant, J. R. Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chem. Mater. 2011, 23, 3381–3399. (52) Bräm, O.; Cannizzo, A.; Chergui, M. Ultrafast Fluorescence Studies of Dye Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2012, 43, 7934–7937. (53) Pellnor, M.; Myllyperkiö, P.; Korppi-Tommola, J.; Yartsev, a.; Sundström, V. Photoinduced Interfacial Electron Injection in RuN3–TiO2 Thin Films: Resolving Picosecond Timescale Injection from the Triplet State of the Protonated and Deprotonated Dyes. Chem. Phys. Lett. 2008, 462, 205–208. (54) Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Pechy, P.; Grätzel, M. Fabrication of Screen‐printing Pastes from TiO2 Powders for Dye‐sensitised Solar Cells. Prog. Photovoltaics Res. Appl. 2007, 15, 603–612. (55) Wu, H.; Lan, C.; Hu, J.; Huang, W.; Shiu, J.; Lan, Z.; Tsai, C.; Su, C.; Diau, E. W. Hybrid Titania Photoanodes with a Nanostructured Multi-Layer Configuration for Highly Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. Lett. 2013, 4, 1570–1577. (56) Ellingson, R. J.; Asbury, J. B.; Ferrere, S.; Ghosh, H. N.; Sprague, J. R.; Lian, T.; Nozik, A. J. Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4’-Dicarboxy-2,2'-bipyridine)2(NCS)2] by Infrared Transient Absorption. J. Phys. Chem. B 1998, 2, 6455–6458. (57) Kallioinen, J.; Korppi-tommola, J. E. I.; Yartsev, A. P.; Sundstro, V. Photoinduced Ultrafast Dye-to-Semiconductor Electron Injection from Nonthermalized and Thermalized Donor States. 2002, 124, 489–493. (58) Asbury, J. B.; Anderson, N. A.; Hao, E.; Ai, X.; Lian, T.; V, E. U. Parameters Affecting Electron Injection Dynamics from Ruthenium Dyes to Titanium Dioxide Nanocrystalline Thin Film. J. Phys. Chem. B 2003, 3, 7376–7386. (59) Verma, S.; Kar, P.; Das, A.; Palit, D. K.; Ghosh, H. N. The Effect of Heavy Atoms on Photoinduced Electron Injection from Nonthermalized and Thermalized Donor States of M(II)-Polypyridyl (M=Ru/Os) Complexes to Nanoparticulate TiO2 Surfaces: An Ultrafast Time-Resolved Absorption Study. Chem. - A Eur. J. 2010, 16, 611–619. (60) Katoh, R.; Furube, A.; Fuke, N.; Fukui, A.; Koide, N. Ultrafast Relaxation as a Possible Limiting Factor of Electron Injection Efficiency in Black Dye Sensitized Nanocrystalline TiO2 Films. J. Phys. Chem. C 2012, 116, 22301–22306. (61) Hung, C. Effects of Porphyrinic Meso-Substituents on the Photovoltaic Performance of Dye-Sensitized Solar Cells: Number and Position of p-Carboxyphenyl and Thienyl Groups on Zinc Porphyrins. J. Phys. Chem. C 2012, 116, 11907. (62) Gao, Y. Q.; Georgievskii, Y.; Marcus, R. a. On the Theory of Electron Transfer Reactions at Semiconductor Electrode/liquid Interfaces. J. Chem. Phys. 2000, 112, 3358–3369. (63) Kittel, C. Introduction to Solid State Physics; 8th ed.; Wiley: New York,U.S., 2004. (64) Huang, J.; Stockwell, D.; Boulesbaa, A.; Guo, J.; Lian, T. Comparison of Electron Injection Dynamics from Rhodamine B to In2O3, SnO2, and ZnO Nanocrystalline Thin Films. J. Phys. Chem. C 2008, 112, 5203–5212. (65) Ai, X.; Anderson, N. a; Guo, J.; Lian, T. Electron Injection Dynamics of Ru Polypyridyl Complexes on SnO2 Nanocrystalline Thin Films. J. Phys. Chem. B 2005, 109, 7088–7094. (66) Anderson, N. a.; Lian, T. Ultrafast Electron Injection from Metal Polypyridyl Complexes to Metal-Oxide Nanocrystalline Thin Films. Coord. Chem. Rev. 2004, 248, 1231–1246. (67) Katoh, R.; Furube, A.; Barzykin, A. V.; Arakawa, H.; Tachiya, M. Kinetics and Mechanism of Electron Injection and Charge Recombination in Dye-Sensitized Nanocrystalline Semiconductors. Coord. Chem. Rev. 2004, 248, 1195–1213. (68) Zhang, G.; Bala, H.; Cheng, Y.; Shi, D.; Lv, X.; Yu, Q.; Wang, P. High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer. Chem. Commun. 2009, 2198–2200. (69) Maiti, N. C.; Mazumdar, S.; Periasamy, N. J- and H-Aggregates of Porphyrin - Surfactant Complexes: Time-Resolved Fluorescence and Other Spectroscopic Studies. J. Phys. Chem. B 1998, 102, 1528–1538. (70) Aggarwal, L. P. F.; Borissevitch, I. E. On the Dynamics of the TPPS4 Aggregation in Aqueous Solutions: Successive Formation of H and J Aggregates. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2006, 63, 227–233. (71) Lee, C.-W.; Lu, H.-P.; Lan, C.-M.; Huang, Y.-L.; Liang, Y.-R.; Yen, W.-N.; Liu, Y.-C.; Lin, Y.-S.; Diau, E. W.-G.; Yeh, C.-Y. Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties. Chem. - A Eur. J. 2009, 15, 1403–1412. (72) Lu, H.-P.; Tsai, C.-Y.; Yen, W.-N.; Hsieh, C.-P.; Lee, C.-W.; Yeh, C.-Y.; Diau, E. W.-G. Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate. J. Phys. Chem. C 2009, 113, 20990–20997. (73) Bessho, T.; Zakeeruddin, S. M.; Yeh, C.-Y.; Diau, E. W.-G.; Grätzel, M. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins. Angew. Chemie Int. ed. 2010, 49, 6646–6649. (74) Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo, H.-H.; Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G. A Strategy to Design Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. Chem. Commun. 2011, 47, 8910–8912. (75) Wang, C.-L.; Lan, C.-M.; Hong, S.-H.; Wang, Y.-F.; Pan, T.-Y.; Chang, C.-W.; Kuo, H.-H.; Kuo, M.-Y.; Diau, E. W.-G.; Lin, C.-Y. Enveloping Porphyrins for Efficient Dye-Sensitized Solar Cells. Energy Environ. Sci. 2012, 5, 6933–6940. (76) Zdyb, A.; Krawczyk, S. Molecule-Solid Interaction: Electronic States of Anthracene-9-Carboxylic Acid Adsorbed on the Surface of TiO2. Appl. Surf. Sci. 2010, 256, 4854–4858. (77) Zdyb, A. Electronic Excited States of Carotenoid Dyes Adsorbed on TiO2. J. Phys. Chem. C 2011, 115, 22328–22335. (78) Jalviste, E.; Ohta, N. Stark Absorption Spectroscopy of Indole and 3-Methylindole. J. Chem. Phys. 2004, 121, 4730–4739. (79) Mehata, M. S.; Iimori, T.; Yoshizawa, T.; Ohta, N. Electroabsorption Spectroscopy of 6-Hydroxyquinoline Doped in Polymer Films: Stark Shifts and Orientational Effects. J. Phys. Chem. A 2006, 110, 10985–10991. (80) Mehata, M. S.; Hsu, C.; Lee, Y.; Ohta, N. Electric Field Effects on Photoluminescence of Polyfluorene Thin Films: Dependence on Excitation Wavelength, Field Strength, and Temperature. J. Phys. Chem. C 2009, 113, 11907–11915. (81) Ardo, S.; Sun, Y.; Castellano, F. N.; Meyer, G. J. Excited-State Electron Transfer from Ruthenium-Polypyridyl Compounds to Anatase TiO2 Nanocrystallites: Evidence for a Stark Effect. J. Phys. Chem. B 2010, 114, 14596–14604. (82) Pastore, M.; Angelis, F. De. Computational Modeling of Stark Effects in Organic Dye-Sensitized TiO2 Heterointerfaces. J. Phys. Chem. Lett. 2011, 2, 1261–1267. (83) Cappel, U. B.; Feldt, S. M.; Schöneboom, J.; Hagfeldt, A.; Boschloo, G. The Influence of Local Electric Fields on Photoinduced Absorption in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2010, 132, 9096–9101. (84) Hsu, H.; Chiang, H.; Hu, J.; Awasthi, K.; Mai, C.; Yeh, C.; Ohta, N.; Diau, E. W. Field-Induced Fluorescence Quenching and Enhancement of Porphyrin Sensitizers on TiO2 Films and in PMMA Films. J. Phys. Chem. C 2013, 117, 24761–24766. (85) Umeuchi, S.; Nishimura, Y.; Yamazaki, I.; Murakami, H.; Yamashita, M.; Ohta, N. Electric Field Effects on Absorption and Fluorescence Spectra of Pyrene Doped in a PMMA Polymer Film. solid Film. 1997, 311, 239–245. (86) Luo, L.; Lo, C.-F.; Lin, C.-Y.; Chang, I.-J.; Diau, E. W.-G. Femtosecond Fluorescence Dynamics of Porphyrin in Solution and Solid Films: The Effects of Aggregation and Interfacial Electron Transfer between Porphyrin and TiO2. J. Phys. Chem. B 2006, 110, 410–419. (87) Kubo, M.; Mori, Y.; Otani, M.; Murakami, M.; Ishibashi, Y.; Yasuda, M.; Hosomizu, K.; Miyasaka, H.; Imahori, H.; Nakashima, S. Ultrafast Photoinduced Electron Transfer in Directly Linked Porphyrin-Ferrocene Dyads. J. Phys. Chem. A 2007, 111, 5136–5143. (88) Nakabayashi, T.; Wu, B.; Morikawa, T.; Iimori, T.; Rubin, M. B.; Speiser, S.; Ohta, N. External Electric Field Effects on Absorption and Fluorescence of Anthracene-(CH2)n-Naphthalene Bichromophoric Molecules Doped in a Polymer Film. J. Photochem. Photobiol. A Chem. 2006, 178, 236–241. (89) Iwaki, Y.; Ohta, N. Electric-Field-Induced Quenching of Fluorescence of Tetraphenylporphyrin in a PMMA Polymer Film. Chem. Lett. 2000, 894–895. (90) Mehata, M. S.; Hsu, C.; Lee, Y.; Ohta, N. Electroabsorption and Electrophotoluminescence of Poly(2,3-Diphenyl-5-Hexyl-P-Phenylene Vinylene). J. Phys. Chem. C 2012, 116, 14789–14795. (91) Lockhart, D. J.; Hammes, S. L.; Franzen, S.; Boxer, S. C. Electric Fieid Effects on Emission Line Shapes When Electron Transfer Competes With Emission: An Example from Photosynthetic Reaction Centers. J. Phys. Chem. 1991, 95, 2217–2226. (92) León, C. P.; Kador, L.; Peng, B.; Thelakkat, M. Characterization of the Adsorption of Ru-Bpy Dyes on Mesoporous TiO2 Films with UV-Vis, Raman, and FTIR Spectroscopies. J. Phys. Chem. B 2006, 110, 8723–8730. (93) Angelis, F. De; Fantacci, S.; Mosconi, E.; Nazeeruddin, M. K.; Grätzel, M. Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models. J. Phys. Chem. C 2011, 115, 8825–8831. (94) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316–319. (95) Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395–398. (96) Liu, D.; Kelly, T. L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nat. Photonics 2013, 8, 133–138. (97) Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. a; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; et al. Low-Temperature Processed Electron Collection Layers of graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett. 2014, 14, 724–730. (98) Rhee, J. H.; Chung, C.-C.; Diau, E. W.-G. A Perspective of Mesoscopic Solar Cells Based on Metal Chalcogenide Quantum Dots and Organometal-Halide Perovskites. NPG Asia Mater. 2013, 5, e68. (99) Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost , High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623. (100) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. (101) Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C. CH3NH3PbI3 Perovskite/fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732. (102) Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates. Nat. Commun. 2013, 4, 2761. (103) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. (104) Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584–1589. (105) Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.; Grätzel, M.; Moser, J.-E. Unravelling the Mechanism of Photoinduced Charge Transfer Processes in Lead Iodide Perovskite Solar Cells. Nat. Photonics 2014, 8, 250–255. (106) Roiati, V.; Colellad, S.; Lerario, G.; Marco, L. De; Rizzo, A.; Listorti, A.; Gigli, G. Investigating Charge Dynamics in Halide Perovskite- Sensitized Mesostructured Solar Cells. Energy Environ. Sci. 2014, 7, 1889–1894. (107) Burn, P. L.; Meredith, P. The Rise of the Perovskites: The Future of Low Cost Solar Photovoltaics? NPG Asia Mater. 2014, 6, e79. (108) Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy Environ. Sci. 2013, 6, 1739. (109) Klimov, V. I. Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673. (110) Lu, Y.-C.; Chang, C.-W.; Diau, E. W.-G. Femtosecond Fluorescence Dynamics of Trans-Azobenzene in Hexane on Excitation to the S1 (n, π*) State. J. Chinese Chem. Soc. 2002, 49, 693–701. (111) Schaller, R. D.; Agranovich, V. M.; Klimov, V. I. High-Efficiency Carrier Multiplication through Direct Photogeneration of Multi-Excitons via Virtual Single-Exciton States. Nat. Phys. 2005, 1, 189–194.
|