跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳嚮陽
研究生(外文):Tan, Xiang-Yang
論文名稱:整合網路書店消費行為之圖書館圖書推薦系統
論文名稱(外文):Library Recommender System – Integrating with Online Bookstore Consumer Behavior
指導教授:黃明居黃明居引用關係陳安斌陳安斌引用關係
指導教授(外文):Hwang, Ming-JiuChen, An-Pin
口試委員:袁賢銘柯皓仁陳安斌黃明居
口試委員(外文):Yuan, Shyan-MingKe, Hao-RenChen, An-PinHwang, Ming-Jiu
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:58
中文關鍵詞:推薦系統網路書店協力式過濾冷門館藏
外文關鍵詞:Recommenders SystemsOnline BookstoreCollaborative FilteringLow Borrow Collections
相關次數:
  • 被引用被引用:1
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:1
對圖書館而言,降低資訊負荷對使用者進行資訊檢索時的苦難與提升冷門館藏的曝光度及利用率,一直是一個重要的挑戰。推薦系統是解決這些挑戰最好的工具之一,然而推薦系統卻必須面對侵犯使用者隱私與資料稀缺等問題。本研究以結合具有龐大資料量及真實消費者行為之網路書店推薦資料與圖書館館藏資料的方式當作推薦系統的資料來源,用以解決上述所遭遇的問題。借鑑協力式過濾之演算法,推演出適用於本研究之推薦度(R)公式,用以計算非透過使用者之間相似度為主的推薦方法。透過實證結果發現,透過結合網路書店資料一定程度上降低了隱私與資料稀缺問題,並提升冷門館藏的曝光度。
Information overload and enhance the usage of low borrow library collections is the challenges of Library. Recommender Systems (RSs) is one of the best tool to overcome these challenges, but its’ always come along with the issues like privacy and data sparsity. This research aim to overcome the challenges and issues above with integrating consumer behavior from online bookstore. Proposed algorithm is Reference by Collaborative Filtering to infer the R-index for the target and the recommend books. The results show that by integrating data from online bookstore can reduce privacy and sparsity issues for recommender system and enhance the visibility of the low borrow collections.
中文摘要 I
英文摘要 II
誌 謝 III
圖目錄 VI
表目錄 VII
公式目錄 VIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與方法 2
1.2.1 資料來源 2
1.2.2 推薦取向 3
1.3 研究範圍與限制 3
1.4 研究流程 4
1.5 論文大綱 6
第二章 文獻回顧 7
2.1 圖書館與資訊檢索 7
2.2 推薦系統 8
2.2.1 推薦系統簡介 8
2.2.2 資料來源 11
2.2.3 推薦取向 14
2.2.3.1 協力式過濾 14
2.2.3.2 內容導向過濾 17
2.2.3.3 常見問題 18
2.2.3.4 混合過濾 19
第三章 系統設計與架構 21
3.1 系統架構 21
3.2 資料來源 22
3.2.1 原始資料與選擇準則 22
3.2.1.1 資料來源 22
3.2.1.2 資料來源選擇準則 23
3.3 前置處理模組 24
3.3.1 館藏資料與借閱紀錄 25
3.3.2 網路書店資料 27
3.4 資料接收模組 27
3.5 資料處理模組 28
3.5.1 館藏資料 29
3.5.2 網路書店資料 31
3.6 邏輯判斷模組 31
3.6.1 借閱紀錄 32
3.6.2 網路書店資料 36
3.6.3 整合清單 37
3.7 資料呈現模組 38
第四章 實證發現與結果分析 40
4.1 資料來源的發現與增益 40
4.1.1 資料可用性 40
4.1.2 資料稀缺與隱私 42
4.2 使用者與系統互動流程 43
4.3 館藏推薦增益 44
4.3.1 冷門館藏曝光 45
4.3.2 權重組合與推薦結果年代 46
4.3.3 權重組合與推薦結果借閱次數 48
4.3.4 推薦目的與結果 50
4.4 其他應用 51
第五章 結論與未來研究 52
5.1 研究結果與貢獻 52
5.2 未來工作 53
參考文獻 54
附錄 58
[1] Adomavicius, G., &; Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734-749.
[2] Adomavicius, G., &; Tuzhilin, A. (2011). Context-aware recommender systems. In Recommender systems handbook (pp. 217-253). Springer US.
[3] Adomavicius, G., Sankaranarayanan, R., Sen, S., &; Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS), 23(1), 103-145.
[4] Amatriain, X., Pujol, J. M., &; Oliver, N. (2009). I like it... i like it not: Evaluating user ratings noise in recommender systems. In User modeling, adaptation, and personalization (pp. 247-258). Springer Berlin Heidelberg.
[5] Amatriain, X., Pujol, J. M., Tintarev, N., &; Oliver, N. (2009, October). Rate it again: increasing recommendation accuracy by user re-rating. In Proceedings of the third ACM conference on Recommender systems (pp. 173-180). ACM.
[6] Anand, S. S., Kearney, P., &; Shapcott, M. (2007). Generating semantically enriched user profiles for web personalization. ACM Transactions on Internet Technology (TOIT), 7(4), 22.
[7] Asabere, N. Y. (2013). Towards a viewpoint of context-aware recommender systems (CARS) and services. International Journal of Computer Science and Telecommunications, 4(1), 10-29.
[8] Baeza-Yates, R., &; Ribeiro-Neto, B. (1999). Modern information retrieval (Vol. 463). New York: ACM press.
[9] Balabanović, M., &; Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72.
[10] Belkin, N. J., &; Croft, W. B. (1992). Information filtering and information retrieval: Two sides of the same coin?. Communications of the ACM, 35(12), 29-38.
[11] Bilge, A., &; Polat, H. (2012). An improved privacy-preserving DWT-based collaborative filtering scheme. Expert Systems with Applications, 39(3), 3841-3854.
[12] Billsus, D., &; Pazzani, M. J. (1998, July). Learning Collaborative Information Filters. In ICML (Vol. 98, pp. 46-54).
[13] Bobadilla, J., Ortega, F., Hernando, A., &; Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132.
[14] Breese, J. S., Heckerman, D., &; Kadie, C. (1998, July). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence (pp. 43-52). Morgan Kaufmann Publishers Inc..
[15] Champiri, Z. D., Shahamiri, S. R., &; Salim, S. S. B. (2015). A systematic review of scholar context-aware recommender systems. Expert Systems with Applications, 42(3), 1743-1758.
[16] Chen, J., Tang, Y., Li, J., Mao, C., &; Xiao, J. (2014, January). Community-based scholar recommendation modeling in academic social network sites. In Web Information Systems Engineering–WISE 2013 Workshops (pp. 325-334). Springer Berlin Heidelberg.
[17] Chen, P. Y., Wu, S. Y., &; Yoon, J. (2004). The impact of online recommendations and consumer feedback on sales. ICIS 2004 Proceedings, 58.
[18] Chowdhury, G. (2010). Introduction to modern information retrieval. Facet publishing.
[19] Felfernig, A., &; Burke, R. (2008, August). Constraint-based recommender systems: technologies and research issues. In Proceedings of the 10th international conference on Electronic commerce (p. 3). ACM.
[20] Getoor, L., &; Sahami, M. (1999, August). Using probabilistic relational models for collaborative filtering. In Workshop on Web Usage Analysis and User Profiling (WEBKDD'99).
[21] Goldberg, K., Roeder, T., Gupta, D., &; Perkins, C. (2001). Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2), 133-151.
[22] Gonçalves, M. A., Fox, E. A., Watson, L. T., &; Kipp, N. A. (2004). Streams, structures, spaces, scenarios, societies (5s): A formal model for digital libraries. ACM Transactions on Information Systems (TOIS), 22(2), 270-312.
[23] Herlocker, J. L., Konstan, J. A., Terveen, L. G., &; Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53.
[24] Jawaheer, G., Szomszor, M., &; Kostkova, P. (2010, September). Comparison of implicit and explicit feedback from an online music recommendation service. In proceedings of the 1st international workshop on information heterogeneity and fusion in recommender systems (pp. 47-51). ACM.
[25] Kuo, J. J., &; Zhang, Y. J. (2012). A library recommender system using interest change over time and matrix clustering. In The Outreach of Digital Libraries: A Globalized Resource Network (pp. 259-268). Springer Berlin Heidelberg.
[26] Lü, L., Medo, M., Yeung, C. H., Zhang, Y. C., Zhang, Z. K., &; Zhou, T. (2012). Recommender systems. Physics Reports, 519(1), 1-49.
[27] Moore, A., &; Taylor, M. (2009). Why buy when you can rent? A brief investigation of differences in acquisition mode based on duration. Applied Economics Letters, 16(12), 1211-1213.
[28] Park, D. H., Kim, H. K., Choi, I. Y., &; Kim, J. K. (2012). A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11), 10059-10072.
[29] Pavlov, D. Y., &; Pennock, D. M. (2002). A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains. In Advances in neural information processing systems (pp. 1441-1448).
[30] Pera, M. S., &; Ng, Y. K. (2011, August). With a little help from my friends: Generating personalized book recommendations using data extracted from a social website. In Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01 (pp. 96-99). IEEE Computer Society.
[31] Pham, M. C., Cao, Y., Klamma, R., &; Jarke, M. (2011). A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis. J. UCS, 17(4), 583-604.
[32] Porcel, C., &; Herrera-Viedma, E. (2010). Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries. Knowledge-Based Systems, 23(1), 32-39.
[33] Renda, M. E., &; Straccia, U. (2005). A personalized collaborative digital library environment: a model and an application. Information processing &; management, 41(1), 5-21.
[34] Resnick, P., &; Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
[35] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., &; Riedl, J. (1994, October). GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186). ACM.
[36] Riedl, J. (2001). Personalization and privacy. Internet Computing, IEEE, 5(6), 29-31.
[37] Schafer, J. B., Konstan, J. A., &; Riedl, J. (2001). E-commerce recommendation applications. In Applications of Data Mining to Electronic Commerce (pp. 115-153). Springer US.
[38] Schatz, B. R. (1997). Information retrieval in digital libraries: Bringing search to the net. Science, 275(5298), 327-334.
[39] Shardanand, U., &; Maes, P. (1995, May). Social information filtering: algorithms for automating “word of mouth”. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 210-217). ACM Press/Addison-Wesley Publishing Co..
[40] Sharif, N., Afzal, M. T., &; Helic, D. (2012, August). A framework for resource recommendations for learners using social bookmarking. In Computing and Networking Technology (ICCNT), 2012 8th International Conference on (pp. 71-76). IEEE.
[41] Smeaton, A. F., &; Callan, J. (2005). Personalisation and recommender systems in digital libraries. International Journal on Digital Libraries, 5(4), 299-308.
[42] Su, X., &; Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009, 4.
[43] Ungar, L. H., &; Foster, D. P. (1998, July). Clustering methods for collaborative filtering. In AAAI workshop on recommendation systems (Vol. 1, pp. 114-129).
[44] Verbert, K., Lindstaedt, S. N., &; Gillet, D. (2010). Context-aware recommender systems J. UCS special issue. Journal of Universal Computer Science, 16(16), 2175-2178.
[45] Wu, H., Hua, Y., Li, B., &; Pei, Y. (2012, May). Enhancing citation recommendation with various evidences. In Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on (pp. 1160-1165). IEEE.
[46] Xing, C., Crestani, F., &; Rauber, A. (Eds.). (2011). Digital Libraries: For Cultural Heritage, Knowledge Dissemination, and Future Creation: 13th International Conference on Asia-Pacific Digital Libraries, ICADL 2011, Beijing, China, October 24-27, 2011, Proceedings (Vol. 7008). Springer.
[47] Ziegler, C. N., McNee, S. M., Konstan, J. A., &; Lausen, G. (2005, May). Improving recommendation lists through topic diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32). ACM.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top