跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 07:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃耀賢
研究生(外文):HUANG,YAO-HSIEN
論文名稱:製作可撓式摻雜石墨烯之鈮酸鈉鉀靜電紡絲複合壓電纖維
論文名稱(外文):Fabrication of Flexible Electrospun Piezoelectric Composites of Potassium Sodium Niobate Nanofibers Doped with Graphene
指導教授:駱榮富
指導教授(外文):LOUH, RONG-FUH
口試委員:駱榮富蔡健益張育誠
口試委員(外文):LOUH, RONG-FUHTSAY, CHIEN-YIECHANG, YU-CHENG
口試日期:2018-07-10
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:117
中文關鍵詞:靜電紡絲法溶膠凝膠法KNN纖維網路結構高定向有序排列還原氧化石墨烯靜電紡絲法液相摻雜法導電性壓電響應
外文關鍵詞:electrospinningsol-gelKNN nanofibershighly oriented ordered nanofibersgrapheneelectrospinning processliquid dopingelectric conductivitypiezoelectricitypiezoelectric force microscopy (PFM)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究工作重點如下:(1)溶膠凝膠法搭配靜電紡絲技術製備奈米級鈮酸鈉鉀(KxNa1-xNbO3; KNN)纖維網絡結構;(2)靜電紡絲法(ESP)與液相摻雜法製作rGO/KNN複合纖維;(3) rGO/KNN複合纖維結合收集器轉速參數製備出有序性電紡絲纖維;(4) rGO/KNN複合纖維紡製於矽基板的四點探針導電性測試;(5) rGO/KNN複合纖維紡在矽基板進行壓電力顯微鏡(PFM)分析測試。
研究結果顯示,吾人以ESP技術可獲得高線徑均一性與密集度之KNN奈米纖維,透過調控製程參數製成有序排列的KNN奈米纖維結構,以ESP法與液相摻雜法可獲得均勻佈植石墨烯的rGO/KNN複合奈米纖維,其中採用液相摻雜法有效提升rGO的含量並維持KNN纖維的完整形貌。將液相摻雜法獲得之rGO/KNN複合纖維進行四點探針導電性測試中,發現添加rGO的液相摻雜樣品能有效提升rGO/KNN複合奈米纖維的導電性。設計ESP技術紡製rGO/KNN複合奈米纖維的壓電響應分析結果指出,rGO/KNN複合奈米纖維的rGO摻雜量由其有助於改善壓電奈米纖維的d33值,由原本的6.36 pm/V提升至18.4 pm/V,此結果顯示rGO有效提升壓電響應能力。

This work aims at the following aspects including (a) preparation of KxNa1-xNbO3 (KNN) nanofibers via both sol-gel and electrospinning (ESP); (b) production of rGO/KNN composite nanofibers by ESP and liquid doping method; (c) four-point probe conductivity test of rGO/KNN composite nanofiber on silicon substrate; and (d) piezoelectric force microscope test of rGO/KNN composite nanofibers deposited on silicon substrate.
The results show that KNN nanofibers of uniform size and density by optimzing the process parameters to form an highly oriented and aligned nanofiber structure. The rGO/KNN composite nanofibers with uniform distribution of implanted graphene were achieved by ESP and liquid doping routes for enhancing the graphene particle doping efficiency and morphological uniformity of KNN fibers. The results show that samples via liquid doping of graphene to increasing electrical conductivity. The electrospun rGO/KNN composite nanofibers examined by a piezoelectric force microscopy (PFM) indicated that the rGO/KNN composite nanofiber with graphene doping will enhance its piezoelectric perfromnace by increasing d33 coefficient from 6.36 pm/V to 18.4 pm/V. We believe that our rGO/KNN composite nanofibers are definitely of a great potential in developing novel applications of flexible electronic devices.

致 謝...........................................I
摘 要...........................................II
ABSTRACT.........................................III
目 錄...........................................IV
圖目錄...........................................VII
表目錄...........................................XII
第一章 緒 論.....................................1
1.1 研究動機......................................1
1.2 研究目的及重點.................................3
第二章 理論基礎....................................8
2.1 靜電紡絲理論與研究.............................8
2.1.1 靜電紡絲之研究...............................8
2.1.2 臨界電位理論(theory of critical value).......11
2.1.3 靜電紡絲之不穩定性射流........................12
2.1.4 影響靜電紡絲之基本參數........................13
2.1.5 合成無機靜電紡絲..............................18
2.2 材料系統之介紹..................................19
2.2.1 鈮酸鉀(KNbO3; KN)............................19
2.2.2 鈮酸鈉(NaNbO3; NN)...........................23
2.2.3 鈮酸鈉鉀((Na1- xK x)NbO3; KNN)...............24
2.3 溶膠凝膠法基本介紹..............................29
2.4 石墨烯之介紹....................................35
2.4.1 碳材料與石墨烯................................35
2.4.2 石墨烯的性質..................................36
2.4.3 石墨烯的製備與應用............................37
2.5 壓電陶瓷的重要電器特性..........................38
2.5.1 機電耦合因子(k)..............................38
2.5.2 介電損失因子.................................39
2.5.3 機械品質因子(Qm).............................40
2.5.4 頻率常數(N)..................................41
2.5.5 壓電應變常數(d)..............................42
2.6 靜電紡絲纖維薄膜壓電之應用......................44
第三章 實驗步驟與方法...............................47
3.1製備鈮酸鈉鉀奈米纖維.............................47
3.1.1 溶膠凝膠法製備氫氧化鈮........................47
3.1.2 溶膠凝膠法製備KNN電紡絲前驅液.................51
3.1.3 哈默法製備氧化石墨烯(GO)......................52
3.1.4 靜電紡絲技術製備KNN纖維.......................54
3.2 靜電紡絲技術製備奈米級KNN纖維之反應參數...........55
3.2.1 前驅液黏度對鈮酸鈉鉀纖維之影響.................55
3.2.2 鈮酸鈉鉀濃度對鈮酸鈉鉀纖維之影響...............56
3.2.3 工作電壓對鈮酸鈉鉀纖維之影響...................57
3.2.4 工作距離對鈮酸鈉鉀纖維之影響...................58
3.2.5 收集器轉速對於鈮酸鈉鉀纖維之影響...............58
3.3 還原氧化石墨烯摻雜鈮酸鈉鉀纖維製程................59
3.3.1 靜電紡絲法製備rGO/KNN複合纖維..................59
3.3.2 液相摻雜法製備rGO/KNN複合纖維..................60
3.4 製備rGO/KNN奈米纖維膜壓電測試....................61
3.5 樣品之材料特性分析...............................62
3.5.1 圓錐-平板式黏度計..............................62
3.5.2 冷場發射掃描式電子顯微鏡表面顯微結構分析.........64
3.5.3 高解析X光繞射儀成分分析........................64
3.5.4 共焦式拉曼散射光譜儀(Raman spctroscopy)........65
3.5.5 四點探針(four-point probe)....................67
3.5.6 高解析多功能掃描式探針顯微鏡之壓電響應力特性分析..68
第四章 結果與討論....................................75
4.1製備奈米級鈮酸鈉鉀纖維薄膜.........................75
4.1.1 前驅液黏度對鈮酸鈉鉀纖維之影響..................75
4.1.2 鈮酸鈉鉀濃度對鈮酸鈉鉀纖維之影響.................77
4.1.3 工作電壓對鈮酸鈉鉀纖維之影響.....................81
4.1.4 工作距離對鈮酸鈉鉀纖維之影響.....................84
4.1.5 收集器轉速對鈮酸鈉鉀奈米纖維的影響................86
4.2石墨烯摻雜鈮酸鈉鉀纖維製程..........................87
4.2.1 靜電紡絲法製備rGO/KNN複合纖維....................88
4.2.2 液相摻雜法-改變熱還原溫度製備rGO/KNN纖維..........89
4.2.3 不同石墨烯含量的液相摻雜製備rGO/KNN纖維...........93
4.3製備rGO/KNN奈米複合纖維進行四點探針導電性測試.........95
4.4 製備rGO/KNN奈米複合纖維進行壓電響應量測.............96
4.5 未來研究方向......................................103
第五章 結 論.........................................106
參考文獻..............................................108
作 者 簡 歷...........................................117
[1]林坤賢, “以電紡絲製備聚苯纖維,” 國立成功大學碩士論文, (2005)。
[2]D. H. Reneker, I. Chun, “Nanometer diameter fibres of polymer, produced by electrospinning,” Nanotech., 7 (1996) 216-223.
[3]M. Vert, S. Li, H. Garreau, “New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids,” Clinical Mater., 10 (1992) 3-8.
[4]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, 43 (2002) 4403-4410.
[5]Hitomi Mukaibo, Lloyd P. Horne, Dooho Park and Charles R. Martin ,“Controlling the Length of Conical Pores Etched in Ion-Tracked Poly(ethylene terephthalate) Membranes,” General nanotechnology, 5 (2009) 2343-2479.
[6]D. H. Reneker, H. Fong, “Polymer Nonofiber: Divison of Polymer Chemistry,” Inc. American Chemical Society (2003) 44.
[7]W. G. Hankel, Abh. Sächs, 12 (1881) 547
[8]L. Wang, R. Zuo, L. Liu, H. Su, M. Shi, X. Chu, X. Wang, L. Li, “Preparation and characterization of sol–gel derived (Li,Ta,Sb) modified (K,Na)NbO3 lead-free ferroelectric thin films,” Materials Chemistry and Physics, 130 (2011) 165-169.
[9]X. Yan, W. Ren, X. Wu, P. Shi, X. Yao, “Lead-free (K, Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties,” J. Alloys and Compounds, 508 (2010) 129-132.
[10]Y. Zhou, M. Guo, C. Zhang, M. Zhang, “Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic,” Ceramics International, 35 (2009) 3253-3258.
[11]J. S. Kim, H. J. Lee, S. Y. Lee, I. W. Kim, S. D. Lee, “Frequency and temperature dependence of dielectric and electrical properties of radio-frequency sputtered lead-free K0.48Na0.52NbO3 thin films,” Thin Solid Films, 518 (2010) 6390-6393
[12]C. R. Cho, “c-Axis oriented (Na,K)NbO3 thin films on Si substrates using metalorganic chemical vapor deposition,” Mater. Lett., 57 (2002) 781-783.
[13]M. Abazari, E. K. Akdogan, A. Safari, “Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates,” J. Appl. Phys., 103 (2008) 104-106.
[14]N. Liu, K. Wang, J. F. Li, and Z. Liu, “Hydrothermal Synthesis and Spark Plasma Sintering of (K,Na)NbO3 Lead-Free Piezoceramics,” J. Am. Ceram. Soc., 92 (2009) 1884–1887.
[15]N. Li, W. L. Li, S. Q. Zhang, W. D. Fei, “Effect of post-annealing treatment in oxygen on dielectric properties of K0.5Na0.5NbO3 thin films prepared by chemical solution deposition,” Thin Solid Films, (2011) 5070-5073.
[16]Li Zhengfa, Li Yongxiang, Zhai Jiwei, “Grain growth and piezoelectric property of KNN-based lead-free ceramics” Current Applied Physics, 11 (2011) 1-12.
[17]A. Formhals, “Process and apparatus for preparing artificial threads,” U.S. Patent, 1, 975, 504 (1934).
[18]J. Doshi, D. H. Reneker, “Electrospinning process and application of electrospum fiber,” J. of Electrostat., 35 (1995) 151-155.
[19]D. H. Reneker, I. Chun, “Nanofiber Diameter Fibres of Polymer Produce by Electrospinning,” Nanotech., 7 (1996) 216-220.
[20]V. Thavasi, G. Singh and S. Ramakrishna, “Electrospun nanofibers in energy and environmental application,” Energy Environ. Sci., 1 (2008) 205-221.
[21]Z. H. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Sci. and Tech., 63 (2003) 2223-2253.
[22]吳大誠、杜仲良、高緒珊編著, in “奈米纖維,” 五南圖書出版(2004), pp. 66-71.
[23]L. Larrondo, R. St. J. Manley, “Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties,” Journal of Polymer Sci., 19 (1981) 909-920.
[24]S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Mater. today, 9 (2006) 40-50.
[25]A. Greiner, J. H. Wendorff, “Electrospinning: a fascinating method for the preparation of ultrathin fibers,” Angew Chem Int Ed, 46 (2007) 5670-5703.
[26]S. H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, “Systematic parameter study for ultra-fine fiber fabrication via electrospinning process,” Polymer, 46 (2005) 6128-6134.
[27]H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, 40 (1999) 4585-4592.
[28]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, 43 (2002) 4403-4412.
[29]K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers,” Polymer, 44 (2003) 4029-4033.
[30]H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, 40 (1999) 4585.
[31]A. Koski, K. Yim, S. Shivkumar, “Effect of molecular weight onfibrous PVA produced by electrospinning,” Materials Letters, 58 (2004) 493-497.
[32]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, 43 (2002) 4403.
[33]M. Cloupeau, B. Prunet-Foch, “Electrostatic spraying of liquids incone-jet mode,” J. Electrostatics, 22 (1989) 135-141.
[34]C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films,” Polymer, 40 (1999) 7397-7401.
[35]C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, “Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process,” Macromolecules, 37 (2004) 573-578.
[36]D. H. Reneker, S. Tripatanasuwan, Z. Zhong, “Effect of evaporation and solidification of the charged jet inelectrospinning of poly(ethylene oxide) aqueous solution,” Polymer, 48 (2007) 5742-5746.
[37]T. Lin, H. Wang, H. Wang, X. Wang, “The charge effect of cationic surfactants on the elimination of fiber beads in the electrospinning of polystyrene,” Nanotechnology, 15 (2004) 1375-1381.
[38]H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, 40 (1999) 4585-4592.
[39]A. Koski, K. Yim, S. Shivkumar, “Effect of Molecular Weight on Fibrous PVA Produced by Electrospinning,” Mater. Letters, 58 (2004) 493-497.
[40]Christopher J. Buchko, Loui C. Chen, D. Nagao, Yu Shen, and David C. Martin, “Processing and microstructural characterization of porous biocompatibleprotein polymer thin films,” Polymer, 40 (1999) 7397-7407.
[41]J. Xie and C. H. Wang, “Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro,” A Pharmaceutical Research, 23 (2006) 1817-1826.
[42]C. L. Casper, N. Yamaguchi, K. L. Kiick, J. F. Rabolt, “Functionalizing electrospun fibers with biologically relevant macromolecules,” Biomacromolecules, 6 (2005) 1998-2007.
[43]S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, “Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers,” Macromolecules, 35 (2002) 8456-8466.
[44]A. F. Lotus, Y. C. Kang, J. I. Walker, R. D. Ramsier, G. G. Chase,“Effect of aluminum oxide doping on the structural, electrical, and optical properties of zinc oxide (AOZO) nanofibers synthesized by electrospinning,” Mater. Sci. and Engr. B, 166 (2010) 61-66.
[45]A. F. Lotus, R. K. Feaver, L. A. Britton, E. T. Bender, D. A. Perhay, N. Stojilovic, R. D. Ramsier, G. G. Chase, “Characterization of TiO2-Al2O3 composite fibers formed by electrospinning a sol-gel and polymer mixture,” Mater. Sci. and Engr. B, 167 (2010) 55-59.
[46]S. J. Doh, C. Kim, S. G. Lee, S. J. Lee, H. Kim, “Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants,” J. of Hazardous Materials, 154 (2008) 118-127.
[47]Y. Liu, H. Zhang, X. An, C. Gao, Z. Zhang, J. Zhou, M. Zhou, E. Xie, “Effect of Al doping on the visible photoluminescence of ZnO nanofibers,” J. of Alloys and Compounds, 506 (2010) 772-776.
[48]A. M. Bazargan, S. M. A. Fateminia, M. Esmaeilpour Ganji, M. A. Bahrevar, “Electrospinning preparation and characterization of cadmium oxide nanofibers,” Chem. Engineering Journal, 155 (2009) 523-527.
[49]Jerawut Kaewsaenee, Pinpan Visal-athaphand, Pitt Supaphol, Varong Pavarajarn, “Fabrication and characterization of neat and aluminium-doped titanium (IV) oxide fibers prepared by combined sol–gel and electrospinning techniques,” Ceramics International, 36 (2010) 2055-2061.
[50]Z. Hou, L. Wang, H. Lian, R. Chai, C. Zhang, Z. Cheng, J. Lin, “Preparation and luminescence properties of Ce3+ and / or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning,” J. of Solid State Chemistry, 182 (2009) 698-708.
[51]Q. Liu, B. Li, J. Gong, Y. Sun, W. Li, “Preparation and luminescent properties of one-dimensional [Ru(Bphen)2dppz]Cl2/PVP composite fibers by electrospinning,” J. of Alloys and Compounds, 466 (2008) 314-318.
[52]P. Viswanathamurthi, N. Bhattarai, C. K. Kim, H. Y. Kim, D. R. Lee, “Ruthenium doped TiO2 fibers by electrospinning,” Inorganic Chemistry Communications, 7 (2004) 679-682.
[53]M. Zhao, X. Wang, L. Ning, H. He, J. Jia, L. Zhang, X. Li, “Synthesis and optical properties of Mg-doped ZnO nanofibers prepared by electrospinning,” J. of Alloys and Compounds, 507 (2010) 97-100.
[54]Y. S. Sung, H. M. Lee, W. Du, H. G. Yeo, S. C. Lee, J. H. Cho, T. K. Song, and M. H. Kim, “Enhanced piezoelectric properties of (Bi0.5K0.5+xLiy)TiO3 ceramics by K nonstoichiometry and Li addition,” Applied Physics Letters, 94 (2009) 062901.
[55]G. Shirane, R. Newnham, and R. Pepinsky, “Dielectric Properties and Phase Transitions of NaNbO3 and (Na,K)NbO3,” Physical Review, 96 (1954) 581.
[56]T. Takenaka, H. Nagata, and Y. Hiruma, “Current Developments and Prospective of Lead-Free Piezoelectric Ceramics,” Japanese Journal of Applied Physics, 47 (2008) 3787-3801.
[57]B. Jaffe, and H. Jaffe, in “Piezoelectric ceramics,”Academic Press, New York, (1971), pp. 573-579.
[58]M. Ahtee and A. M. Glazer, “Lead-free piezoelectric ceramics: K2O-Na2O-Nb2O5,” Theor. Gen. Crystallogr, 11 (1976) 173-177.
[59]H. D. Megaw, “Seven Phases of Sodium Niobate,” Ferroelectrics, 7 (1974) 87-89.
[60]H. W. Kroto, et. al., “C60: Buckminsterfullerene,” Nature, 318 (1985) 162-163.
[61]S. Lijima, “Helical microtubules of graphitic carbon,” Nature, 354 (1991) 56-58.
[62]K. S. Novoselov, A. K. Geim, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306 (2004) 666-669.
[63]A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Materials, 6 (2007) 183-191.
[64]C. Lee, et. al., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, 321 (2008) 385-388.
[65]F. Liu, et. al., “Ab initio calculation of ideal strength and phonon instability of graphene under tension,” J. Phys. Rev. B, 6 (2007) 061420.
[66]K.S. Novoselov, Z. Jiang, Y. Zhang, et. al., “Room-Temperature Quantum Hall Effect in Graphene,” Science, 315 (2007) 1379.
[67]徐秀娟、秦金貴、李振, “石墨烯研究進展,” 化學進展, 21 (2009) 2559-2567.
[68]F. Schedin, et. al., “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater., 6 (2007) 652-655.
[69]吳朗編著, in “電子陶瓷¬:壓電,” 台北市:全欣科技圖書 (1994).
[70]O. Muller, et. al., in “The Major Ternary Structural Families,” Springer-Verlag, Berlin, (1974), pp.135-137.
[71]H. H. Singh, et. al., “Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal,” Compos. Sci. Technol., 149 (2017) 127-133.
[72]M. S. Bafqi, et. al., “Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency,” J. Polym. Res., 22 (2015) 1-9.
[73]Y. Duan, et. al., “Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers, Polymers,” 9 (2017) 714.
[74]X. Wang, et. al., “Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A ReviewSensors,” Sensors, 18 (2018) 330.
[75]D. N. Nguyen, et. al., “Electrospinning of poly(γ‐benzyl–α,L‐glutamate) microfibers for piezoelectric polymer applications,” J. Appl. Polym. Sci., 27(2018) 46440
[76]張景翔, “利用壓電力顯微鏡探討鈮酸鹽之一維奈米線結構的區域壓電特性,” 國立清華大學碩士論文, (2012) pp.169-173.
[77]Roger Prokach, Asylum Research and Sergei Kalinin, “Piezoresponse Force Microscopy with Asylum Research AFMs,” In “PFM App Note,” Asylum Research, (2008), pp.1-24.
[78]H. H. Singh, et. al., “Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal,” Compos. Sci. Technol., 149 (2017) 127-133.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊