跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林明翰
研究生(外文):Lin, Ming-Han
論文名稱:含溴鉛鹵和含碘鉛鹵鈣鈦礦材料 應用於太陽能電池以及氨氣感測器之製程與特性
論文名稱(外文):Fabrication and Characterization of Solar Cells and Ammonia Sensors with Lead Halide Iodide and Lead Halide Bromide Perovskite Materials
指導教授:洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員:孟心飛張志宇
口試委員(外文):Meng, Hsin-FeiChang, Chih-Yu
口試日期:2018-07-04
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:34
中文關鍵詞:鈣鈦礦太陽能電池溶液一步法氨氣感測器氟化鋰
外文關鍵詞:PerovskitesolarcellAmmoniagassensorLiFSingle-step
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究使用的有機-無機鈣鈦礦太陽能電池為標準P-I-N結構
(ITO/PEDOT:PSS-AI4083/Bromide or Iodine Perovskite/PCBM(C60)/Al),鈣鈦礦層製程方式為一步法旋塗溶液加上氯仿(chloroform)洗滌表面使表面平坦。
第一部分為改變鉛鹵鈣鈦礦中不同鹵元素(溴和碘)的比例,達到不同的電性以及吸收光波長範圍的改變,希望能以人為可控的製作方式,將吸收波長範圍不同的鈣鈦礦太陽能電池應用於匹配的環境以達到較有效的吸收。
第二部分為測試鈣鈦礦中鹵素為溴和碘,分別接觸氨氣後的電性影響,因想突破一般鈣鈦礦方面的研究多半與太陽能電池有關,本研究將鈣鈦礦材料製作成簡易的氣體感測器,進行不同鈣鈦礦材料對於氨氣的反應,將為鈣鈦礦開啟新的應用領域。
第三部分為嘗試在電子傳輸層(PCBM)及導電金屬(Al)的陰極端加入介面層氟化鋰(LiF),使PCBM層與金屬鋁層的能階更加匹配,以提升填充因子(FF)進一步提升太陽能電池發光效率,並追蹤介面層對於電池壽命造成的影響。
The organic-inorganic perovskite solar cells used standard P-I-N structure
(ITO/PEDOT:PSS-AI4083/Bromide or Iodine Perovskite/PCBM(C60)/Al) in this thesis,
The fabrication of perovskite layer is single-step liquid spin process and then rinse chloroform for the flat surfaces.
The first part is changing the proportion of different halogen elements (bromine and iodine) in lead-halogen perovskites to make electrical and light wavelength absorption range different. We wish applied in matched environment to achieve more effective absorption with absorption wavelength artificially controllable.
The second part test the response with ammonia gas of halogen on bromine and iodine in perovskite. Because general perovskite researches are mostly related to solar cells, the different perovskite materials made into a simple gas sensor for the reaction of ammonia gas. We hope to open up new applications for perovskites.
The third part try to add lithium fluoride (LiF) at the cathode between the electron transport layer (PCBM) and conductive metal (Al). It can let energy level more matched at the positive structure perovskite solar cell cathode, further increasing the fill factor (FF) and efficiency and tracking the battery lifetime.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章 序論 1
1.1 研究背景 1
1.1.1 前言 1
1.1.2 太陽能電池的發展 2
1.1.3 鈣鈦礦太陽能電池發展 3
1.2 研究動機 4
1.2.1 鈣鈦礦的優勢與劣勢 4
1.2.2 本論文的目標 4
1.3 論文架構 5
第二章 實驗原理 6
2.1 理想太陽能電池基本介紹 6
2.2 太陽能電池重要參數介紹 8
2.2.1 開路電壓Voc 8
2.2.2 短路電流Jsc 8
2.2.3 最大功率 Pmax (Vmpp,Impp) 8
2.2.4 填充因子 FF 8
2.2.5 光電轉換效率 PCE 9
2.3 本論文所使用的材料介紹 10
2.3.1 鈣鈦礦太陽能電池與氨氣感測器結構與各層能階關係 10
2.3.2 太陽能電池主動層材料 10
2.3.3 陽極端電極與電洞傳輸層材料 11
2.3.4 陰極端電極與電子傳輸層材料 12
第三章、實驗製程 13
3.1 本實驗元件製作程序簡介 13
3.2 ITO玻璃基板圖像化 14
3.2.1 ITO玻璃初步加工與清洗 14
3.2.2 貼上乾式光阻及曝光 14
3.2.3 乾式光阻顯影 14
3.2.4 ITO玻璃基板蝕刻 15
3.2.5 殘餘光阻脫膜 15
3.3 ITO標準清洗與UV照射增加親水性 15
3.4 旋塗上電洞傳輸層及退火 16
3.5 旋塗上鈣鈦礦本質層及退火 16
3.5.1 調配一步法製程的鈣鈦礦溶液 16
3.5.2 旋塗鈣鈦礦溶液並用氯仿(CF)洗滌表面 17
3.5.3 退火使鈣鈦礦結晶完全 17
3.6 旋塗電子傳輸層 17
3.7 蒸鍍電極 18
3.8 元件封裝 18
3.9 各種量測(PCE、UV、壽命、氨氣反應、SEM) 19
第四章、實驗結果與分析討論 21
4.1 不同溴碘比例鈣鈦礦的電性及吸收光譜範圍 21
4.1.1 不同溴碘比例鈣鈦礦的配製方法 21
4.1.2 電性差異與吸收光譜範圍 22
4.2 鈣鈦礦材料與氨氣反應 24
4.2.1 純溴鈣鈦礦與氨氣反應 24
4.2.2 純碘鈣鈦礦與氨氣反應 26
4.3 陰極端加入介面層LiF對元件電性及壽命的影響 27
4.3.1 介面層LiF對元件電性的影響 27
4.3.2 介面層LiF對元件壽命的影響 28
第五章 結論 30
參考文獻 31
[1] BP Statistical Review of World Energy 2017
Retrieved from https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
[2] CPC Corporation, Taiwan
Retrieved from http://en.cpc.com.tw/
[3] Solar cell development
Retrieved from http://www.isu.edu.tw/upload/81201/41/news/postfile_7422.pdf
[4] Solar cell
Retrieved from https://en.wikipedia.org/wiki/Solar_cell
[5] Perovskite
Retrieved from https://en.wikipedia.org/wiki/Perovskite
[6] The best record of solar cell efficiency
Retrieved from https://www.nrel.gov/pv/
[7] Jeffrey A. Christians, Philip Schulz, Jonathan S. Tinkham, Tracy H. Schloemer, Steven P. Harvey, Bertrand J. Tremolet de Villers, Alan Sellinger, Joseph J. Berry and Joseph M. Luther. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nature Energy 2018, 68–74
[8] Yangyang Dang, Yian Zhou, Xiaolong Liu and Dianxing Ju. Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top‐Seeded Solution Growth, National Natural Science Foundation of China 2016, 51321091, 51227002, 51272129 [9] W. Schottky. Small-Shot Effect and Flicker Effect, Phys. Rev. 1926, 28, 74
[10]Work function Retrieved from https://en.wikipedia.org/wiki/Work_function
[11] A. Einstein. Concerning an Heuristic Point of View Toward the Emission and Transformation of Light. American Journal of Physics 1965, v. 33, n. 5
[12] Herbert B. Michaelson. The work function of the elements and its periodicity, Journal of Applied Physics 1977, 48,4729
[13]Sunlight
Retrieved from https://en.wikipedia.org/wiki/Sunlight
[14] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes. Light-emitting diodes based on conjugated polymers,Nature volume347 1990, pages539–541
[15] T. M. Brown, J. S. Kim, R. H. Friend, and F. Cacialli, Built-in field electron absorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Appl. Phys. 1999, 75, 1679
[16] Sigalit Aharon, Bat El Cohen, and Lioz Etgar. Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell. The Journal of Physical Chemistry C (ACS Publications) 2014, 118, 17160−17165
[17] Gillzyb .Perovskite battery: a new star in the solar cell industry. 2014 , Energy Trend Green Energy web news
[18] Kojima, A., Masashi, I., Kenjiro, T., Tsutomu, M. Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized With Porous Alumina Media. Chem. Lett. 2012, 41, 397−399
[19] Ishihara, T. Optical Properties of PbI-Based Perovskite Structures. J. Lumin. 1994, 60−61, 269−274
[20] M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/ poly (styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. 2000, 77, 2255
[21] Jangwon Seo , Sangman Park , Young Chan Kim , Nam Joong Jeon , Jun Hong Noh and Sung Cheol Yoon . Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 2014, 7, 2642, DOI: 10.1039/c4ee01216j
[22] Steve Byrnes. Schottky junction solar cells. NSE 2008, 290
[23] Xinming Li, Hongwei Zhu, Kunlin Wang,Anyuan Cao, Jinquan Wei, Chunyan Li, Yi Jia, Zhen Li, Xiao Li and Dehai Wu. Graphene‐On‐Silicon Schottky Junction Solar Cells. Advanced Materials 2010, Volume22, Issue25 July 6, Pages 2743-2748
[24] R.J.Handy. Theoretical analysis of the series resistance of a solar cell. Solid-State Electronics 1967, Volume 10, Issue 8, Pages 765-775
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊