跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/19 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張嘉哲
研究生(外文):Chia-je Chang
論文名稱:具三維缺陷之銅奈米線塑性行為研究
論文名稱(外文):Plastic Behavior Analysis of Cu Nanowires Including 3-D Defects
指導教授:林原慶林原慶引用關係
指導教授(外文):Yuan-Ching Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:分子動力學缺陷塑性行為銅奈米線單軸拉伸
外文關鍵詞:MDcrackplastic behaviorCu nanowiresuniaxial tension
相關次數:
  • 被引用被引用:1
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用分子動力學(MD)模擬銅奈米試片在單軸拉伸下之塑性行為,假設試片內部存在有不同幾何外型之封閉缺陷,並配合不同拉伸方向,探討其奈米線的變形機制與差排發射、移動行為對其強度之影響,原子間勢能函數則採用嵌入原子式模型(EAM)。
模擬結果顯示,當差排由內部封閉缺陷周圍發射時,其強度會比完美晶體排列的試棒低。拉伸方向為<111>時,由於彈性變形時的側向變形量較小,因此內部存在有缺陷時對強度之影響較少,亦即其缺陷敏感度較低;而拉伸方向為<110>時,彈性變形時的側向變形量在<010>方向最大,因此內部存在有缺陷時,於此方向的影響程度也最高,故整體而言,拉伸方向為<110>時,其缺陷敏感度最高。而拉伸方向為<100>時,若內部存在之缺陷具有與拉力軸平行之圓柱狀對稱的幾何性質時,則在單軸拉伸條件下,由於對稱性的差排滑移,容易形成疊差菱形柱(Stacking fault rhombic pillar)。
This study analyzes mechanical behaviors of defective Cu nanowires with three different orientations during uniaxial tension, using a molecular dynamic simulation. The investigation designs the various shapes and orientations of closed cracks inside nanowires and studies the influences of the cracks on the strength, deformation mechanism, dislocation emission. The embedded-atom-method (EAM) potential is employed to describe the atomic interactions.
Analysis results demonstrate that if the leading dislocation are emitted from cracks, the strength of the defective nanowires occur is lower than that of defect-free nanowires. When the load direction is <111>, the difference in the influence of the crack on strength between the defective nanowires and defect-free nanowires because the amount of later elastic deformation of the <111> nanowires is less than other orientations. When the <110> nanowires are under tension, the effect of the crack on strength is the highest because the later elastic deformation in <010> is the highest. Therefore, the <110> orientation is the most sensitive to the crack under tension.
For the <100> nanowires, if the cross section of the crack is circular, the dislocation mechanism easy to form the stacking fault rhombic pillar due to the symmetry of dislocation slip.
目錄
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
誌謝……………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
表索引…………………………………………………………………Ⅷ
圖索引…………………………………………………………………Ⅸ
第1章 緒論……………………………………………………………1
1.1 研究動機及目的………………………………………1
1.2 分子動力學文獻回顧…………………………………3
第2章 分子動力學基礎理論………………………………………5
2.1 勢能函數…………………………………………………5
2.2 原子級應力、應變計算………………………………7
2.3 Verlet list 表列法…………………………………………9
2.4 Centrosymmetry參數…………………………………10
第3章 程式模擬步驟與試片模型建立…………………………12
3.1 程式模擬步驟…………………………………………12
3.1.1 初步預備(Initialization)………………………12
3.1.1.1 預備(Preliminaries)………………12
3.1.1.2 初始條件(Initialization)……………16
3.1.2 平衡(Equilibration)……………………………17
3.1.3 動態模擬(Production)…………………………18
3.2 試片模型建立…………………………………………19
3.2 蒲松比(Poisson’s ratio)之計算方式…………………….21
第4章 結果與討論…………………………………………………24
4.1 模擬結果……………………………………………24
4.1.1 <100>試棒之拉伸行為.……...……………..….…24
4.1.1.1 <100>完美晶體試棒之拉伸行為(Specimen A)………………………………………....24
4.1.1.2 <100>試棒內部包含一近似圓形缺陷之拉伸行為(Specimen B)……………………..26
4.1.1.3 <100>試棒內部包含一長軸平行於[100]方向之橢圓形缺陷拉伸行為(Specimen C)…………………………………………27
4.1.1.4 <100>試棒內部包含一長軸平行於拉力軸之橢圓形缺陷拉伸行為(Specimen D)…………………………………………28
4.1.2 <110>試棒之拉伸行為.……...……………..….…30
4.1.2.1 <110>完美晶體試棒之拉伸行為(Specimen E)………………………………………....30
4.1.2.2 <110>試棒內部包含一近似圓形缺陷之拉伸行為(Specimen F)……………………..30
4.1.2.3 <110>試棒內部包含一長軸平行於<110>之橢圓形缺陷拉伸行為(Specimen G)……..31
4.1.2.4 <110>試棒內部包含一長軸平行於拉力軸之橢圓形缺陷拉伸行為(Specimen H)…………………………………………31
4.1.2.5 <110>試棒內部包含一長軸平行於<100>之橢圓形缺陷拉伸行為(Specimen I)…...32
4.1.3 <111>試棒之拉伸行為.……...……………..….…33
4.1.3.1 <111>完美晶體試棒之拉伸行為(Specimen J)……………………………………….....33
4.1.3.2 <111>試棒內部包含一近似圓形缺陷之拉伸行為(Specimen K)……………………..33
4.1.3.3 <111>試棒內部包含一長軸平行於<110>之橢圓形缺陷拉伸行為(Specimen L)……..33
4.1.3.4 <111>試棒內部包含一長軸平行於拉力軸之橢圓形缺陷拉伸行為(Specimen M)………………………………………...34
4.1.3.5 <111>試棒內部包含一長軸平行於<112>之橢圓形缺陷拉伸行為(Specimen N)…......34
4.2 試棒之拉伸行為分析……………..………….…….…...35
4.2.1 <100>試棒之拉伸行為分析..……………….....…35
4.2.2 <110>試棒之拉伸行為分析..……………….....…38
4.2.3 <111>試棒之拉伸行為分析..……………….....…41
第5章 結論與建議…………………………………………………..44
5.1 結論……………………………………………………...44
5.2 未來研究方向與建議…………………………………...45
參考文獻………………………………………………………………..46




表索引
表2.1 銅晶體之Centrosymmetry參數值……….……………………52
表3.1 EAM模型參數表……..……………………………………….52
表3.2 物理參數無因次化換算表…………………………………….53
表3.3 Gear’s預測修正法參數與展開階數關係表………….……….54
表3.4 各項參數及條件設定………………………………….………55
表3.5 試棒編號及試棒特徵描述…………………………………….56
表4.1 Specimen B Lomer-Cottrell障壁形成反應式…….……..…….58
表4.2 Specimen D Lomer-Cottrell障壁形成反應式…………..…….59
表4.3 拉伸方向為<100>之各試棒機械性質表…...…………..…….60
表4.4 拉伸方向為<110>之各試棒機械性質表…...…………..…….61
表4.5 拉伸方向為<111>之各試棒機械性質表…...…………..…….62
表4.6 拉伸方向為<111>,試棒長度加長之各試棒強度比較...…….63

圖索引
圖2.1 原子間相對距離與鍵結能關係圖………..…………………...64
圖2.2 局部最大應力(真應力)示意圖……………..………….……...65
圖2.3 Verlet表列法示意圖.…………………………………………66
圖2.4 Centrosymmetry 參數值計算示意圖……………...…………67
圖3.1 模擬流程示意圖………….…….……………………………...68
圖3.2 試棒模型外觀………………………….…...……………….....69
圖3.3 拉伸方向為<100>試棒透試圖….………………………..…...70
圖3.4 拉伸方向為<110>試棒透試圖….………………………..…...71
圖3.5 拉伸方向為<111>試棒透試圖….………………………..…...72
圖3.6 蒲松比(Poisson’s ratio)之計算示意圖….……….………..…...73
圖4.1 Specimen A拉伸過程中型態變化圖……………………..…...74
圖4.2 Specimen A應力應變曲線圖……….……………...……..…...75
圖4.3 Specimen B拉伸過程中型態變化圖……………………..…...76
圖4.4 Specimen B應力應變曲線圖……….……………...……..…...77
圖4.5 Specimen B疊差菱形柱形成機制示意圖………………….....78
圖4.6 Specimen C拉伸過程中型態變化圖……………………..…...79
圖4.7 Specimen C應力應變曲線圖……….……………...……..…...80
圖4.8 Specimen D拉伸過程中型態變化圖……………...……..…...81
圖4.9 Specimen D應力應變曲線圖……………………...……..…...82
圖4.10 Specimen D疊差菱形柱形成機制示意圖...………..…..…...82
圖4.11 Specimen D在拉伸過程中原子排列方向之轉換….…..…...83
圖4.12 Specimen B ~ Specimen D 缺陷周圍原子在拉伸過程中變形狀態三視圖…..…………………………………………….....84
圖4.13 Specimen E拉伸過程中型態變化圖………………………...85
圖4.14 Specimen E應力應變曲線圖……...…….…………………...86
圖4.15 Specimen F拉伸過程中型態變化圖………………………...87
圖4.16 Specimen F應力應變曲線圖……...…….…………………...88
圖4.17 Specimen G拉伸過程中型態變化圖…………...…………...89
圖4.18 Specimen G應力應變曲線圖……...…….……...…………...90
圖4.19 Specimen H拉伸過程中型態變化圖……………...………...91
圖4.20 Specimen H應力應變曲線圖……...…….…………………..92
圖4.21 Specimen I拉伸過程中型態變化圖…….…………………...93
圖4.22 Specimen I應力應變曲線圖……....…….…………………...94
圖4.23 Specimen J拉伸過程中型態變化圖…….…………………...95
圖4.24 Specimen J應力應變曲線圖……...…….…………………...96
圖4.25 Specimen K拉伸過程中型態變化圖…….……………..…...97
圖4.26 Specimen K應力應變曲線圖……...…….……...…………...98
圖4.27 Specimen L拉伸過程中型態變化圖…….………...………...99
圖4.28 Specimen L應力應變曲線圖……...…….………………….100
圖4.29 Specimen M拉伸過程中型態變化圖…….…..…………….101
圖4.30 Specimen M應力應變曲線圖……...…….……...………….102
圖4.31 Specimen N拉伸過程中型態變化圖…….………..……….103
圖4.32 Specimen N應力應變曲線圖……...…….………...……….104
圖4.33 拉伸方向為<100>時,FCC滑動系統示意圖...…………….105
圖4.34 彈性變形內原子側向收縮示意圖………………………….106
圖4.35 Specimen F ~ Specimen I缺陷周圍原子在拉伸過程中變形狀態三視圖…..………………………………………………...107
圖4.36 拉伸方向為<110>時,FCC滑動系統示意圖...…………….108
圖4.37 Specimen K ~ Specimen N缺陷周圍原子在拉伸過程中變形狀態三視圖…..……………………………………………...109
圖4.38 拉伸方向為<111>時,FCC滑動系統示意圖...…………..…110
[1]. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy,” Phy. Rev. Lett., Vol.49, No.1, pp.57-61(1982).
[2]. 尹邦躍、張勁燕,奈米時代,第014∼020頁,台北,五南圖書,民國九十一年。
[3]. H. A. Wu, “Molecular Dynamics Study of The Mechanics of Metal Nanowires at Finite Temperature,” Eur. J. mech. A. Solids., Vol.25, pp.370-377(2006).
[4]. H. A. Wu, “Molecular Dynamics Study on Mechanics of Metal Nanowire,” Mech. res. commun., Vol.33, pp.9-16(2006).
[5]. W. Liang, and M. Zhou, “Size and Strain Rate Effects in Tensile Deformation of Cu Nanowires,” 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and materials Confere7-10 April 2003, Norfolk, Virginia(2003).
[6]. Paulo S. Branicio, and Jose-Pedro Rino, “Large Deformation and Amorphization of Ni Nanowires Under Uniaxial Strain: A molecular Dynamics Study,” Phy. Rev. B., Vol.62, No.24, pp.16950-16955(2000).
[7]. S. J. A. Koh, and H. P. Lee, “Molecular Dynamics Simulation of Size and Strain Rate Dependent Mechanical Response of FCC Metallic Nanowires,” Nanotechnology., Vol.17, pp.3451-3467(2006).
[8]. Harold S. Park, and Changjiang Ji, “On the Thermomechanical Deformation of Silver Shape Memory Nanowires,” Acta Materialia, Vol.54, pp.2645-2654(2006).
[9]. Harold S. Park, and Jonathan A. Zimmerman, “Stable Nanobridge Formation in <110> Gold Nanowires Under Tensile Deformation,” Scripta mater., Vol.54, pp.1127-1132(2006).
[10]. M. Makino, T. Tsuji, and N. Noda, “MD Simulation of Atom-order Void Formation in Ni FCC Metal,” Computational Mechanics, Vol.26, pp.281-287(2000).
[11]. M. Li, W. Y. Chu, K. W. Gao, and L. J. Qiao, “Molecular Dynamics Simulation of Healing of an Ellipsoid Crack in Copper Under Compressive Stress,” Mater. Lett., Vol.58, pp.543-546(2004).
[12]. Dongbin Wei, Jingtao Han, A. Kiet Tieu, and Zhengyi Jiang, “Simulation of Crack Healing in BCC Fe,” Scripta mater., Vol.51, pp.583-587(2004).
[13]. N. Nozaki, Masao Doyama, and Y. Kogure, “Plastic Deformation of Copper Thin Foils,” Thin solid films., Vol.424, No.1, pp.88-92(2003).
[14]. H. Rafii-Tabar, H. M. Shodja, M. Darabi, and A. Dahi, “Molecular Dynamics Simulation of Crack Propagation in FCC Materials Containing Clusters of Impurities,” Mech. mater., Vol.38, pp.243-252(1982).
[15]. A. Machova, and F. Kroupa, “Atomistic Modelling of Contribution of Dislocations to Crack Opening Displacements,” Mater. Sci. Eng. A234-236, pp.185-188(1997).
[16]. Hans-Rainer Trebin, Ralph Mikulla, Jorg Stadler, Gunther Schaaf, and Peter Gumbsch, “Molecular Dynamics Simulations of crack Propagation in Quasicrystals,” Comput. phys. commun., Vol.121-122, pp.536-539(1999).
[17]. Jan Cerv, Michal Landa, and Anna Machova, “Transonic Twinning From the Crack Tip,” Scripta mater., Vol.43, pp.423-428(2000).
[18]. Masao Doyama, “Simulation of Plastic Deformation and Fracture of Small Crystals,” Mater. sci. eng., A176, pp.277-28(1994).


[19]. J. H. Irving, and John G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics,” J. chem. phys., Vol.18, No.6, pp.817-829(1950).
[20]. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller, “Equation of State Calculations by Fast Computing Machines,” J. chem. phys., Vol.21, No.6, pp.1087-1092(1953).
[21]. 王子瑜、曹�琤�,「布朗運動、郎之萬方程式、與布朗動力學」,物理雙月刊,第二十七卷,第三期,第456∼461頁,民國九十四年。
[22]. Loup Verlet, “Computer “Experiment” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. rev., Vol.159, No.1, pp.98-103(1967).
[23]. B. Quentrec, and C. Brot, “New Method for Neighbors in Molecular Dynamics Computations,” J. comput. phys., Vol.13, pp.430-432(1973).
[24]. D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. phys. rep., Vol.9, pp.1-53(1988).
[25]. Baolin Wang, Daning Shi, Jianming Jia, Guanghou Wang, Xiaoshuang Chen, and Jijun Zhao, “Elastic and Plastic Deformations of Nickel Nanowires Under Uniaxial Compression,” Physica E: Low-dimensional Systems and Nanostructures, Vol.30, pp.45-50(2005).
[26]. R. Komanduri, N.Chandrasekaran, and L. M. Raff, “Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at nanolevel,” Int. j. mech. sci., Vol.43, pp.2237-2260(2001).

[27]. O. Rodriguez de la Fuente, J. A. Zimmerman, M. A. Gonzalez, J. de la Figuera, J. C. Hamilton, Woei Wu Pai, and J. M. Rojo, “Dislocation Emission Around Nanoindentation on a (001) FCC Metal Surface Studied by Scanning Tunneling Microscopy and Atomistic Simulations,” Phy. Rev. Lett., Vol.88, No.3, pp.0361011-0361014(2002).
[28]. Te-Hua Fang, Sheng-Rui Jian, and Der-San Chuu, “Molecular Dynamics Analysis of Effects of Velocity and Loading on the Nanoindentation,” Jpn. J. Appl. Phys., Vol.41, pp.1328-1331(2002).
[29]. Te-Hua Fang, Cheng-I Weng, and Jee-Gong Chang, “Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement,” Mater. sci. eng., A357, pp.7-12(2003).
[30]. R. A. Johnson, “Alloy Models with the Embedded-Atom Method,” Phy. Rev. B., Vol.39, No.17, pp.12554-12559(1989).
[31]. Harold S. Park, Eduard G. Karpov, Patrick A. Klein, and Wing Kam Liu, “Three-Dimensional Bridging Scale Analysis of Dynamic Fracture,” J. comput. phys., Vol.207, pp.588-609(2005).
[32]. Murray S. Daw, Stephen M. Foiles, and Michael I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications,” Mater. sci. rep., Vol.9, pp.251-310(1993).
[33]. Murray S. Daw, and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phy. Rev. Lett., Vol.50, No.17, pp.1285-1288(1983).
[34]. Murray S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phy. Rev. B., Vol.29, No.12, pp.6443-6453(1983).
[35]. R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals,” Phy. Rev. B., Vol.37, No.8, pp.3924-3931(1988).
[36]. R. Clausius, “On a Mechanical Theory Applicable to Heat,” Phil. Mag., Vol.40, 122(1870).
[37]. Z. S. Basinski, M. S. Duesbery, and R. Taylor, “Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice,” Can. j. phys., Vol.49, 2160(1971).
[38]. D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, “Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model,” Philosophical Magazine A.44 pp.847-866(1981).
[39]. N. Miyazaki, and S. Shiozaki, “Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method,” JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
[40]. Y. C. Lin, and D. J. Pen, “Atomistic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method,” Molecular Simulation. Accepted. (2007).
[41]. Cynthia L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Phy. Rev. B., Vol.58, No.17, pp.11085-11088(1998).
[42]. J. M. Haile, Molecular Dynamics Simulation, John Wiley and Sons, New York, (1992).
[43]. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, (1971).
[44]. K. Christmann, Introduction to Surface Physical Chemistry, Springer-Verlag, New York, pp.34-83 (1991).
[45]. Kazuhiko Yoshida, Yoshihiko Gotoh, and Mikio Yamamoto, “The Thickness Dependence of Plastic Behaviors of Copper Whiskers,” J. Phys. Soc. Jpn., Vol.24, No.5, pp.1099-1107(1968).
[46]. D. Hull, and D. J. Bacon, Introduction to Dislocation, Butterworth-Heinemann, Melbourne, pp.82-101 (2001).

[47]. George E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, pp.124-130 (1988).
[48]. Y. C. Lin, and D. J. Pen, “Analogous Behaviors in <100> and <110> Directions of Cu Nanowires Under Tension and Compression,” Nanotechnology., (Submitted)(2007).
[49]. N. S. Trahair, Flexural-Torsional Buckling of Structures, CRC Press, Tokyo, pp.229-235 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊