|
[1]. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy,” Phy. Rev. Lett., Vol.49, No.1, pp.57-61(1982). [2]. 尹邦躍、張勁燕,奈米時代,第014∼020頁,台北,五南圖書,民國九十一年。 [3]. H. A. Wu, “Molecular Dynamics Study of The Mechanics of Metal Nanowires at Finite Temperature,” Eur. J. mech. A. Solids., Vol.25, pp.370-377(2006). [4]. H. A. Wu, “Molecular Dynamics Study on Mechanics of Metal Nanowire,” Mech. res. commun., Vol.33, pp.9-16(2006). [5]. W. Liang, and M. Zhou, “Size and Strain Rate Effects in Tensile Deformation of Cu Nanowires,” 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and materials Confere7-10 April 2003, Norfolk, Virginia(2003). [6]. Paulo S. Branicio, and Jose-Pedro Rino, “Large Deformation and Amorphization of Ni Nanowires Under Uniaxial Strain: A molecular Dynamics Study,” Phy. Rev. B., Vol.62, No.24, pp.16950-16955(2000). [7]. S. J. A. Koh, and H. P. Lee, “Molecular Dynamics Simulation of Size and Strain Rate Dependent Mechanical Response of FCC Metallic Nanowires,” Nanotechnology., Vol.17, pp.3451-3467(2006). [8]. Harold S. Park, and Changjiang Ji, “On the Thermomechanical Deformation of Silver Shape Memory Nanowires,” Acta Materialia, Vol.54, pp.2645-2654(2006). [9]. Harold S. Park, and Jonathan A. Zimmerman, “Stable Nanobridge Formation in <110> Gold Nanowires Under Tensile Deformation,” Scripta mater., Vol.54, pp.1127-1132(2006). [10]. M. Makino, T. Tsuji, and N. Noda, “MD Simulation of Atom-order Void Formation in Ni FCC Metal,” Computational Mechanics, Vol.26, pp.281-287(2000). [11]. M. Li, W. Y. Chu, K. W. Gao, and L. J. Qiao, “Molecular Dynamics Simulation of Healing of an Ellipsoid Crack in Copper Under Compressive Stress,” Mater. Lett., Vol.58, pp.543-546(2004). [12]. Dongbin Wei, Jingtao Han, A. Kiet Tieu, and Zhengyi Jiang, “Simulation of Crack Healing in BCC Fe,” Scripta mater., Vol.51, pp.583-587(2004). [13]. N. Nozaki, Masao Doyama, and Y. Kogure, “Plastic Deformation of Copper Thin Foils,” Thin solid films., Vol.424, No.1, pp.88-92(2003). [14]. H. Rafii-Tabar, H. M. Shodja, M. Darabi, and A. Dahi, “Molecular Dynamics Simulation of Crack Propagation in FCC Materials Containing Clusters of Impurities,” Mech. mater., Vol.38, pp.243-252(1982). [15]. A. Machova, and F. Kroupa, “Atomistic Modelling of Contribution of Dislocations to Crack Opening Displacements,” Mater. Sci. Eng. A234-236, pp.185-188(1997). [16]. Hans-Rainer Trebin, Ralph Mikulla, Jorg Stadler, Gunther Schaaf, and Peter Gumbsch, “Molecular Dynamics Simulations of crack Propagation in Quasicrystals,” Comput. phys. commun., Vol.121-122, pp.536-539(1999). [17]. Jan Cerv, Michal Landa, and Anna Machova, “Transonic Twinning From the Crack Tip,” Scripta mater., Vol.43, pp.423-428(2000). [18]. Masao Doyama, “Simulation of Plastic Deformation and Fracture of Small Crystals,” Mater. sci. eng., A176, pp.277-28(1994).
[19]. J. H. Irving, and John G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics,” J. chem. phys., Vol.18, No.6, pp.817-829(1950). [20]. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller, “Equation of State Calculations by Fast Computing Machines,” J. chem. phys., Vol.21, No.6, pp.1087-1092(1953). [21]. 王子瑜、曹�琤�,「布朗運動、郎之萬方程式、與布朗動力學」,物理雙月刊,第二十七卷,第三期,第456∼461頁,民國九十四年。 [22]. Loup Verlet, “Computer “Experiment” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. rev., Vol.159, No.1, pp.98-103(1967). [23]. B. Quentrec, and C. Brot, “New Method for Neighbors in Molecular Dynamics Computations,” J. comput. phys., Vol.13, pp.430-432(1973). [24]. D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. phys. rep., Vol.9, pp.1-53(1988). [25]. Baolin Wang, Daning Shi, Jianming Jia, Guanghou Wang, Xiaoshuang Chen, and Jijun Zhao, “Elastic and Plastic Deformations of Nickel Nanowires Under Uniaxial Compression,” Physica E: Low-dimensional Systems and Nanostructures, Vol.30, pp.45-50(2005). [26]. R. Komanduri, N.Chandrasekaran, and L. M. Raff, “Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at nanolevel,” Int. j. mech. sci., Vol.43, pp.2237-2260(2001).
[27]. O. Rodriguez de la Fuente, J. A. Zimmerman, M. A. Gonzalez, J. de la Figuera, J. C. Hamilton, Woei Wu Pai, and J. M. Rojo, “Dislocation Emission Around Nanoindentation on a (001) FCC Metal Surface Studied by Scanning Tunneling Microscopy and Atomistic Simulations,” Phy. Rev. Lett., Vol.88, No.3, pp.0361011-0361014(2002). [28]. Te-Hua Fang, Sheng-Rui Jian, and Der-San Chuu, “Molecular Dynamics Analysis of Effects of Velocity and Loading on the Nanoindentation,” Jpn. J. Appl. Phys., Vol.41, pp.1328-1331(2002). [29]. Te-Hua Fang, Cheng-I Weng, and Jee-Gong Chang, “Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement,” Mater. sci. eng., A357, pp.7-12(2003). [30]. R. A. Johnson, “Alloy Models with the Embedded-Atom Method,” Phy. Rev. B., Vol.39, No.17, pp.12554-12559(1989). [31]. Harold S. Park, Eduard G. Karpov, Patrick A. Klein, and Wing Kam Liu, “Three-Dimensional Bridging Scale Analysis of Dynamic Fracture,” J. comput. phys., Vol.207, pp.588-609(2005). [32]. Murray S. Daw, Stephen M. Foiles, and Michael I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications,” Mater. sci. rep., Vol.9, pp.251-310(1993). [33]. Murray S. Daw, and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phy. Rev. Lett., Vol.50, No.17, pp.1285-1288(1983). [34]. Murray S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phy. Rev. B., Vol.29, No.12, pp.6443-6453(1983). [35]. R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals,” Phy. Rev. B., Vol.37, No.8, pp.3924-3931(1988). [36]. R. Clausius, “On a Mechanical Theory Applicable to Heat,” Phil. Mag., Vol.40, 122(1870). [37]. Z. S. Basinski, M. S. Duesbery, and R. Taylor, “Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice,” Can. j. phys., Vol.49, 2160(1971). [38]. D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, “Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model,” Philosophical Magazine A.44 pp.847-866(1981). [39]. N. Miyazaki, and S. Shiozaki, “Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method,” JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996). [40]. Y. C. Lin, and D. J. Pen, “Atomistic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method,” Molecular Simulation. Accepted. (2007). [41]. Cynthia L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Phy. Rev. B., Vol.58, No.17, pp.11085-11088(1998). [42]. J. M. Haile, Molecular Dynamics Simulation, John Wiley and Sons, New York, (1992). [43]. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, (1971). [44]. K. Christmann, Introduction to Surface Physical Chemistry, Springer-Verlag, New York, pp.34-83 (1991). [45]. Kazuhiko Yoshida, Yoshihiko Gotoh, and Mikio Yamamoto, “The Thickness Dependence of Plastic Behaviors of Copper Whiskers,” J. Phys. Soc. Jpn., Vol.24, No.5, pp.1099-1107(1968). [46]. D. Hull, and D. J. Bacon, Introduction to Dislocation, Butterworth-Heinemann, Melbourne, pp.82-101 (2001).
[47]. George E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, pp.124-130 (1988). [48]. Y. C. Lin, and D. J. Pen, “Analogous Behaviors in <100> and <110> Directions of Cu Nanowires Under Tension and Compression,” Nanotechnology., (Submitted)(2007). [49]. N. S. Trahair, Flexural-Torsional Buckling of Structures, CRC Press, Tokyo, pp.229-235 (1993).
|