跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃唯庭
研究生(外文):Wei-Ting Huang
論文名稱:製作貴金屬奈米陣列螯合含硫醇鍵化合物以表面增強拉曼散射偵測水溶液中重金屬離子之方法開發研究
論文名稱(外文):Use Surface-Enhanced Raman Scattering to detect hazardous metal Based on Thiol bond-containing compound - Modified Gold Nanoparticles
指導教授:黃俊嬴
指導教授(外文):Genin Gary Huang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫藥暨應用化學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:表面增強拉曼散射奈米陣列
外文關鍵詞:Surface-enhanced Raman scattering(SERS)Nanoparticle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
重金屬汙染是現今的一個重要課題,有許多方法在探討如何檢測水溶液中的重金屬離子,尤其是常見的汞離子,而表面增強拉曼散射是近代新的檢測概念,高靈敏度是其最大特徵,是利用高熱點去檢測樣品之訊號。
在本實驗中將探討新的方法以檢測水溶液中的汞二價(Ⅱ)離子。以表面電漿共振效應方法著手,使用金與銀金屬奈米陣列作為基底並接上含硫醇鍵且距拉曼光譜活性之化合物,含硫醇鍵之化合物與汞離子進行螯合,藉由觀察其在測量汞離子前後表面增強拉曼散射圖譜之變化以達到檢測汞離子的效果。然而使用不同的溶劑會對陣列形成之排列有所不同,進而影響到拉曼訊號的增強效果。最後使用兩種方法檢測重金屬離子,觀察重金屬離子對表面增強拉曼散射的變化,並發展出一有效的高增強效果基材。


Nowadays our Industrial development are more developed that produce heavy metal ions. Heavy metal ions contain toxins and accumulated in the body, the Earth caused pollution of the environment more besides destroying the environment even endanger health. Therefore we are committed to detect heavy metal ions’ existence in our daily life, to prevented contamination. Surface-enhanced Raman scattering (SERS) has proven to be promising for the detection of trace analytes. And the noble metal nanoparticles have broad range of applicability. Noble metal nanoparticles can increase Surface-enhanced Raman scattering (SERS) signal to detect heavy metal ions. However, the repeatability of noble metal nanoparticles is difficult to control. We planned to make noble metal form colloid particles form a regular array of nanoparticles patterns by adjusting the surface energy. We use SH- compound attached to nanoparticle arrays. Then the analytes which contain heavy metal may chelation with SH- compound. Finally, use Surface-enhanced Raman scattering (SERS) to detect enhanced signal of heavy metal.

一、 緒論 11
1.1 拉曼光譜基本理論與應用 11
1.1.1 拉曼光譜的基本理論 11
1.1.2 拉曼光譜的應用 16
1.1.3 表面增強拉曼散射 16
1.2 奈米粒子材料應用與發展 20
1.2.1 奈米粒子材料的應用 20
1.2.2 奈米粒子材料的發展 21
1.3 研究動機及目的 22
1.4 文獻回顧 22
二、 實驗相關資料 24
2.1 實驗藥品與設備 24
2.1.1 儀器設備 24
2.1.2 實驗藥品 26
2.2 實驗步驟與流程 28
2.2.1 金奈米粒子的製備 28
2.2.2 銀奈米粒子的製備 28
2.2.3 貴金屬奈米陣列的製備 29
2.2.4 表面增強拉曼散射光譜之測量 29
2.2.5 汞離子之測定 31
三、 結果與討論 35
3.1 金奈米粒子陣列製備條件的優化 35
3.1.1 標定物體積對奈米陣列之影響 38
3.1.2 極性溶劑對奈米陣列之影響 42
3.1.3 有機溶劑對奈米陣列之影響 49
3.2 銀奈米粒子陣列製備條件的優化 59
3.2.1 極性溶劑對奈米陣列之影響 62
3.2.2 有機溶劑對奈米陣列之影響 68
3.3 以貴金屬奈米粒子陣列結合表面增強拉曼散射檢測水溶液中汞離子 78
3.3.1 檢測方法之優化 78
四、 結論與未來展望 86
五、 參考文獻 88


1.Raman, C.V.K., K. S., Molecular Spectra in the Extreme Infra-Red. Nature, 1928. 122(289): p. 401-402.
2.Chen, S., et al., Self-assembly of gold nanoparticles to silver microspheres as highly efficient 3D SERS substrates. Nanoscale Research Letters, 2013. 8(1): p. 168-168.
3.Sun, J., et al., Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid. ACS Applied Materials & Interfaces, 2015. 7(30): p. 16730-16737.
4.Zhang, K., et al., Interfacial Self-Assembled Functional Nanoparticle Array: A Facile Surface-Enhanced Raman Scattering Sensor for Specific Detection of Trace Analytes. Analytical Chemistry, 2014. 86(13): p. 6660-6665.
5.Sun, F., et al., Stealth Surface Modification of Surface-Enhanced Raman Scattering Substrates for Sensitive and Accurate Detection in Protein Solutions. ACS Nano, 2015. 9(3): p. 2668-2676.
6.Ji, W., et al., Design of an anti-aggregated SERS sensing platform for metal ion detection based on bovine serum albumin-mediated metal nanoparticles. Chemical Communications, 2013. 49(66): p. 7334-7336.
7.M. Fleischmann, P.J.H., A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
8.Masango, S.S., et al., High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition. Nano Letters, 2016.
9.Shegai, T., et al., Angular Distribution of Surface-Enhanced Raman Scattering from Individual Au Nanoparticle Aggregates. ACS Nano, 2011. 5(3): p. 2036-2041.
10.Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. 1974. 26(2): p. 163-166.
11.Margulis, K., et al., Celecoxib Nanoparticles for Therapeutic Angiogenesis. ACS Nano, 2015. 9(9): p. 9416-9426.
12.Kameta, N., M. Masuda, and T. Shimizu, Soft Nanotube Hydrogels Functioning As Artificial Chaperones. ACS Nano, 2012. 6(6): p. 5249-5258.
13.Zanoni, K.P.S., R.C. Amaral, and N.Y. Murakami Iha, All-Nano-TiO2 Compact Film for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014. 6(13): p. 10421-10428.
14.Akbulut, M., S.M. D’Addio, and R.K. Prud’homme, Polymers in Nano Pharmaceutical Materials, in Polymeric Delivery of Therapeutics. 2010, American Chemical Society. p. 25-45.
15.Zamarion, V.M., et al., Ultrasensitive SERS Nanoprobes for Hazardous Metal Ions Based on Trimercaptotriazine-Modified Gold Nanoparticles. Inorganic Chemistry, 2008. 47(8): p. 2934-2936.
16.Yin, J., et al., SERS-Active Nanoparticles for Sensitive and Selective Detection of Cadmium Ion (Cd2+). Chemistry of Materials, 2011. 23(21): p. 4756-4764.
17.Kang, T., et al., Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination. Lab on a Chip, 2012. 12(17): p. 3077-3081.
18.Liu, P., et al., Profiling of Thiol-Containing Compounds by Stable Isotope Labeling Double Precursor Ion Scan Mass Spectrometry. Analytical Chemistry, 2014. 86(19): p. 9765-9773.
19.Li, Y., Y. Yang, and X. Guan, Benzofurazan Sulfides for Thiol Imaging and Quantification in Live Cells through Fluorescence Microscopy. Analytical Chemistry, 2012. 84(15): p. 6877-6883.
20.Zhao, L., J. Blackburn, and C.L. Brosseau, Quantitative Detection of Uric Acid by Electrochemical-Surface Enhanced Raman Spectroscopy Using a Multilayered Au/Ag Substrate. Analytical Chemistry, 2015. 87(1): p. 441-447.
21.Egusa, S., P.L. Redmond, and N.F. Scherer, Thermally-Driven Nanoparticle Array Growth from Atomic Au Precursor Solutions. The Journal of Physical Chemistry C, 2007. 111(49): p. 17993-17996.
22.Jin, R., S. Egusa, and N.F. Scherer, Thermally-Induced Formation of Atomic Au Clusters and Conversion into Nanocubes. Journal of the American Chemical Society, 2004. 126(32): p. 9900-9901.
23.Pang, J., et al., Free-Standing, Patternable Nanoparticle/Polymer Monolayer Arrays Formed by Evaporation Induced Self-Assembly at a Fluid Interface. Journal of the American Chemical Society, 2008. 130(11): p. 3284-3285.
24.Liu, J.-W., et al., A General Strategy for Self-Assembly of Nanosized Building Blocks on Liquid/Liquid Interfaces. Small, 2012. 8(15): p. 2412-2420.
25.Chang, H.-Y., et al., Using Rhodamine 6G-Modified Gold Nanoparticles To Detect Organic Mercury Species in Highly Saline Solutions. Environmental Science & Technology, 2011. 45(4): p. 1534-1539.
26.Chen, G.-H., et al., Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices. Analytical Chemistry, 2014. 86(14): p. 6843-6849.
27.Zhang, L., et al., Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions. ACS Nano, 2013. 7(5): p. 4595-4600.
28.Osawa, M., et al., Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. The Journal of Physical Chemistry, 1994. 98(48): p. 12702-12707.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top