|
1.Raman, C.V.K., K. S., Molecular Spectra in the Extreme Infra-Red. Nature, 1928. 122(289): p. 401-402. 2.Chen, S., et al., Self-assembly of gold nanoparticles to silver microspheres as highly efficient 3D SERS substrates. Nanoscale Research Letters, 2013. 8(1): p. 168-168. 3.Sun, J., et al., Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid. ACS Applied Materials & Interfaces, 2015. 7(30): p. 16730-16737. 4.Zhang, K., et al., Interfacial Self-Assembled Functional Nanoparticle Array: A Facile Surface-Enhanced Raman Scattering Sensor for Specific Detection of Trace Analytes. Analytical Chemistry, 2014. 86(13): p. 6660-6665. 5.Sun, F., et al., Stealth Surface Modification of Surface-Enhanced Raman Scattering Substrates for Sensitive and Accurate Detection in Protein Solutions. ACS Nano, 2015. 9(3): p. 2668-2676. 6.Ji, W., et al., Design of an anti-aggregated SERS sensing platform for metal ion detection based on bovine serum albumin-mediated metal nanoparticles. Chemical Communications, 2013. 49(66): p. 7334-7336. 7.M. Fleischmann, P.J.H., A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166. 8.Masango, S.S., et al., High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition. Nano Letters, 2016. 9.Shegai, T., et al., Angular Distribution of Surface-Enhanced Raman Scattering from Individual Au Nanoparticle Aggregates. ACS Nano, 2011. 5(3): p. 2036-2041. 10.Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. 1974. 26(2): p. 163-166. 11.Margulis, K., et al., Celecoxib Nanoparticles for Therapeutic Angiogenesis. ACS Nano, 2015. 9(9): p. 9416-9426. 12.Kameta, N., M. Masuda, and T. Shimizu, Soft Nanotube Hydrogels Functioning As Artificial Chaperones. ACS Nano, 2012. 6(6): p. 5249-5258. 13.Zanoni, K.P.S., R.C. Amaral, and N.Y. Murakami Iha, All-Nano-TiO2 Compact Film for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014. 6(13): p. 10421-10428. 14.Akbulut, M., S.M. D’Addio, and R.K. Prud’homme, Polymers in Nano Pharmaceutical Materials, in Polymeric Delivery of Therapeutics. 2010, American Chemical Society. p. 25-45. 15.Zamarion, V.M., et al., Ultrasensitive SERS Nanoprobes for Hazardous Metal Ions Based on Trimercaptotriazine-Modified Gold Nanoparticles. Inorganic Chemistry, 2008. 47(8): p. 2934-2936. 16.Yin, J., et al., SERS-Active Nanoparticles for Sensitive and Selective Detection of Cadmium Ion (Cd2+). Chemistry of Materials, 2011. 23(21): p. 4756-4764. 17.Kang, T., et al., Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination. Lab on a Chip, 2012. 12(17): p. 3077-3081. 18.Liu, P., et al., Profiling of Thiol-Containing Compounds by Stable Isotope Labeling Double Precursor Ion Scan Mass Spectrometry. Analytical Chemistry, 2014. 86(19): p. 9765-9773. 19.Li, Y., Y. Yang, and X. Guan, Benzofurazan Sulfides for Thiol Imaging and Quantification in Live Cells through Fluorescence Microscopy. Analytical Chemistry, 2012. 84(15): p. 6877-6883. 20.Zhao, L., J. Blackburn, and C.L. Brosseau, Quantitative Detection of Uric Acid by Electrochemical-Surface Enhanced Raman Spectroscopy Using a Multilayered Au/Ag Substrate. Analytical Chemistry, 2015. 87(1): p. 441-447. 21.Egusa, S., P.L. Redmond, and N.F. Scherer, Thermally-Driven Nanoparticle Array Growth from Atomic Au Precursor Solutions. The Journal of Physical Chemistry C, 2007. 111(49): p. 17993-17996. 22.Jin, R., S. Egusa, and N.F. Scherer, Thermally-Induced Formation of Atomic Au Clusters and Conversion into Nanocubes. Journal of the American Chemical Society, 2004. 126(32): p. 9900-9901. 23.Pang, J., et al., Free-Standing, Patternable Nanoparticle/Polymer Monolayer Arrays Formed by Evaporation Induced Self-Assembly at a Fluid Interface. Journal of the American Chemical Society, 2008. 130(11): p. 3284-3285. 24.Liu, J.-W., et al., A General Strategy for Self-Assembly of Nanosized Building Blocks on Liquid/Liquid Interfaces. Small, 2012. 8(15): p. 2412-2420. 25.Chang, H.-Y., et al., Using Rhodamine 6G-Modified Gold Nanoparticles To Detect Organic Mercury Species in Highly Saline Solutions. Environmental Science & Technology, 2011. 45(4): p. 1534-1539. 26.Chen, G.-H., et al., Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices. Analytical Chemistry, 2014. 86(14): p. 6843-6849. 27.Zhang, L., et al., Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions. ACS Nano, 2013. 7(5): p. 4595-4600. 28.Osawa, M., et al., Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. The Journal of Physical Chemistry, 1994. 98(48): p. 12702-12707.
|