跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/23 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李彥頲
研究生(外文):Yen-Ting Li
論文名稱:標準模型之實數純量擴展:電弱相變之規範與方策依賴探討
論文名稱(外文):Standard Model with a Real Singlet Scalar: An Investigation of Scheme Dependence and Gauge Dependence in Electroweak Phase Transition
指導教授:蔣正偉
指導教授(外文):Cheng-Wei Chiang
口試委員:何小剛吳建宏
口試委員(外文):He Xiao-GangNg Kin-Wang
口試日期:2018-11-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:56
中文關鍵詞:有效場論微擾理論規範依賴規範場論重整化重求和電弱作用臨界現象數值計算數值方法
DOI:10.6342/NTU201900064
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了實現兩步電弱相變,此碩論探討了將標準模型擴增一個實數單態粒子。我們利用許多不同方策(scheme)去探討且量化模型中的方策以及規範依賴。在考慮第一階圈圖計算時,on-shell (OS)-like方策中的Nambu-Goldstone 波色子需要被重求和以避免紅外發散,而我們量化其重求和後對電弱相變的影響。在OS-like以及MS-bar方策中,兩者所計算的電弱相變之臨界溫度相當一致。在規範依賴的探討中,採用High-temperature以及Patel-Ramsey-Musolf方策來做比較。在某些方策中,分析出的結果對重整化能量尺度有依賴性,此顯示了高階修正是必須的。但無論是對規範有依賴或無依賴的方策,最終資料分析顯示,兩者都在理論誤差以內。
In this thesis, the standard model is extended with a real singlet scalar $S$ to achieve a two-step electroweak phase transition (EWPT). The model is investigated with several schemes to quantify the scheme dependence and the gauge dependence issue. In on-shell(OS)-like scheme, at the one-loop order, Nambu-Goldstone boson contributions are needed to be resummed to circumvent the IR divergence; their effects in the EWPT are studied and quantified. The critical temperatures and critical vacuum expectation values of the EWPT in the OS-like and the MS-bar schemes are highly consistent to each other; we also compare the results with two gauge-independent schemes (the high temperature and the Patel-Ramsey-Musolf schemes). Even though higher order corrections are needed for scale-dependent schemes, the general trend of the results are consistent and the analyses show the differences of gauge-dependent and -independent schemes are within theoretical uncertainties.
口試委員會審定書 . . . . . . . . . . . . . . . . . . . . . . ii
誌謝 . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . v
摘要 . . . . . . . . . . . . . . . . . . . . . . vi
Abstract . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1
2 Model: SM + Real Singlet Scalar . . . . . . . . . . . . . . . . . . . . . . 8
2.1 On-shell-like Scheme (OS-like) . . . . . . . . . . . . . . . . . . . . . . 10
2.2 MS Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Thermal History and Thermal Potential . . . . . . . . . . . . . . . . . . 13
2.3.1 Standard method of searching T C and critical VEVs . . . . . . . 14
2.4 High Temperature (HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Patel-Ramsey-Musolf (PRM) Scheme . . . . . . . . . . . . . . . . . . . 15
2.5.1 Gauge-independent T C and VEVs . . . . . . . . . . . . . . . . . 16
3 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Critical Temperature and Critical VEV . . . . . . . . . . . . . . . . . . . 19
3.2 (non)Thermal Gauge and NG Boson Contribution . . . . . . . . . . . . . 20
3.3 Scheme Dependence Comparison . . . . . . . . . . . . . . . . . . . . . 22
3.4 Scale Dependence of T C . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . 26
4.1 Discussion: Dark Matter, Vacuum Stability and Perturbativity . . . . . . 26
4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A Generating Functional of 1(not 1)-PI . . . . . . . . . . . . . . . . . . . . . . 28
B Effective Potential in One-Loop . . . . . . . . . . . . . . . . . . . . . . 31
C Approximate Thermal Function . . . . . . . . . . . . . . . . . . . . . . 36
C.1 Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C.1.1 HTEB (a < 0:35) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
C.1.2 PFFB (0:35 a 9:0) . . . . . . . . . . . . . . . . . . . . . . . 37
C.1.3 LTEB (a > 9:0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
C.1.4 Bessel Approximation for a 2 i ℜ . . . . . . . . . . . . . . . . . 38
C.2 Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C.2.1 HTEF (a < 0:32) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C.2.2 PFFF (0:32 a 9:0) . . . . . . . . . . . . . . . . . . . . . . . 39
C.2.3 LTEF (a > 9:0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
C.2.4 a 2 i ℜ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
D Field-Dependent Mass . . . . . . . . . . . . . . . . . . . . . . 41
D.1 Higgs Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
D.2 NG Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
D.3 Gauge Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
D.4 Top Quark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
E An Illustrative Application PRM . . . . . . . . . . . . . . . . . . . . . . 45
E.1 Gauge-invariant T C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Bibliography . . . . . . . . . . . . . . . . . . . . . . 54
[1] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)] [Sov. Phys. Usp. 34, no. 5, 392 (1991)] [Usp. Fiz. Nauk 161, no. 5, 61 (1991)].
[2] A. D. Sakharov, Sov. Phys. Usp. 34, no. 5, 417 (1991) [Usp. Fiz. Nauk 161, no. 5, 110 (1991)].
[3] N. S. Manton, Phys. Rev. D 28, 2019 (1983); F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30, 2212 (1984).
[4] H. H. Patel and M. J. Ramsey-Musolf, JHEP 1107, 029 (2011).
[5] K. Fuyuto and E. Senaha, Phys. Rev. D 90, no. 1, 015015 (2014).
[6] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012); G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012).
[7] M. Laine and K. Rummukainen, Nucl. Phys. Proc. Suppl. 73, 180 (1999)
[8] C. P. Burgess, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B 619, 709 (2001); S. Profumo, L. Ubaldi and C. Wainwright, Phys. Rev. D 82, 123514 (2010); Y. Mambrini, Phys. Rev. D 84, 115017 (2011).
[9] V. Silveira and A. Zee, Phys. Lett. 161B, 136 (1985); J. McDonald, Phys. Rev. D 50, 3637 (1994); C. P. Burgess, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B 619, 709 (2001); D. O’Connell, M. J. Ramsey-Musolf and M. B. Wise, Phys. Rev. D 75, 037701 (2007); V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf and G. Shaughnessy, Phys. Rev. D 77, 035005 (2008); S. Bhattacharya, P. Poulose and P. 54Ghosh, JCAP 1704, no. 04, 043 (2017); J. A. Casas, D. G. Cerdeo, J. M. Moreno and J. Quilis, JHEP 1705, 036 (2017).
[10] M. Garny and T. Konstandin, JHEP 1207, 189 (2012).
[11] C. L. Wainwright, S. Profumo and M. J. Ramsey-Musolf, Phys. Rev. D 86, 083537 (2012).
[12] S. P. Martin, Phys. Rev. D 90, no. 1, 016013 (2014).
[13] J. Elias-Miro, J. R. Espinosa and T. Konstandin, JHEP 1408, 034 (2014).
[14] D. Curtin, P. Meade and C. T. Yu, JHEP 1411, 127 (2014).
[15] N. K. Nielsen, Nucl. Phys. B 101, 173 (1975).
[16] R. Fukuda and T. Kugo, Phys. Rev. D 13, 3469 (1976).
[17] R. Jackiw, Phys. Rev. D 9, 1686 (1974).
[18] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
[19] S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).
[20] Koichi Funakubo, Shuichiro Tao and Fumihiko Toyoda, Prog. Theor. Phys. 114, 2 (2005).
[21] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[22] D. Curtin, P. Meade and H. Ramani, arXiv:1612.00466 [hep-ph].
[23] E. Braaten and R. D. Pisarski, Phys. Rev. Lett. 64, 1338 (1990).
[24] C. W. Chiang and E. Senaha, Phys. Lett. B 774, 489 (2017).
[25] C. W. Chiang, M. J. Ramsey-Musolf and E. Senaha, Phys. Rev. D, 97, 015005 (2018).
[26] Yann Mambrini, Phys. Rev. D 84, 115017 (2011)
[27] Carlos E Yaguna, JCAP, 2009, 003 (2009)
[28] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[29] T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, arXiv: 1706.07433 [astro-ph.CO].
[30] G. Belanger, F. Boudjema and A. Pukhov, arXiv:1402.0787 [hep-ph].
[31] P. Athron, J. M. Cornell, F. Kahlhoefer, J. Mckay, P. Scott and S. Wild, arXiv:1806.11281 [hep-ph].
[32] J. P. Ellis, Comput. Phys. Commun. 210, 103 (2017).
[33] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge University Press (2017).
[34] L. Dolan and R. Jackiw, Phys. Rev. D 9, 2904 (1974).
[35] Andrew Fowlie, Comput. Phys. Commun. 228, 264 (2018).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top