跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧冠丞
研究生(外文):Guan-Cheng Lu
論文名稱:半固態鋰離子電池的穿刺分析
論文名稱(外文):Penetrating Analysis of semi-solid-state Lithium Battery
指導教授:陳國慶陳國慶引用關係
口試委員:郭志禹林祺皓
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:114
中文關鍵詞:半固態鋰離子電池電化學模型電池穿刺熱失控簡化模型
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來智慧型手機與電動車迅速發展,使得提供與儲存電能的鋰離子電池變得極為重要。在市場趨勢上,為了滿足產品需求,所以電池電容量在近幾年逐漸提升,而電池在充放電產生的大電流,會使其溫度會有顯著的變化,因此電池的熱穩定性成為非常重要的安全性課題之一。

對於液態鋰離子電池來說,內部的電解液為易燃性材料,所以其熱穩定性較差;而固態鋰離子電池則在電容量受到限制,於是為了減少電池內部電解液與維持電池電容量,使用固態電解質與液態電解液組合而成的半固態鋰離子電池就此誕生。半固態鋰離子電池作為新型電池,我們可以為其建立一維電化學模型,並可將其用在模擬電池的充放電行為與電池溫度變化。此外,模擬可以減少實驗電池的使用,僅需藉由部分電池參數,即可得到電池電性的資料。

穿刺電池試驗為電池安全性檢測的其中一個項目,而其藉由電池溫度來判定試驗結果,所以電池穿刺後的溫度極為重要,若能藉由部分實驗參數,模擬電池穿刺後的溫度變化,對電池研究會有很大的幫助。在部分鋰離子電池穿刺實驗的文獻中,有對電池穿刺後的溫度進行模擬,而在各文獻所使用的模型架構有許多不同處,本論文會對各模型間差異進行比較,並藉由一開始所建立的半固態鋰離子電池之一維電化學模型與三維熱傳模型的組合,模擬其電池穿刺後的溫度變化情形,並與工研院所做的實驗結果比對,用來驗證模型架構的準確性。
Due to the rapid development of mobile devices and electric vehicles in recent years, lithium-ion batteries which supply and store electrical energy have become extremely important. In order to meet the demand of the market, battery capacity has gradually increased over the past few years, which often leads to significant temperature rise during charging and discharging by large current flow. Therefore, thermal stability of the battery becomes one of the most important and urgent issues when it comes to battery safety.

For traditional lithium-ion batteries, the internal electrolyte is a flammable material which means it has poor thermal stability; while the relatively new all-solid-state lithium battery has better thermal stability, it has limited in capacity. To keep the best of both batteries, semi-solid-state lithium battery using the combination of both solid and liquid electrolyte was born.

In this work, an one-dimensional electrochemical model for this new breed of battery is proposed. This model can not only be used to simulate the charge-discharge behavior and the temperature change of the battery, but also obtaining charge-discharge curve data with merely a few battery parameters. This results in reduction of numbers of batteries needed for experiment, which is great save of time and cost.

Battery penetration test is one of the items of battery safety test, and the battery temperature is used as an indicator to judge the results. Therefore, the temperature of the penetrated battery is extremely important. The battery penetration model will be a great help in the battery research, if we can only use some experiment parameters to simulate the battery temperature after penetration. In some literature of battery penetration experiments, they set up different simulated model to predict the battery temperature change. In this thesis, we will compare each model and sort out the best set up to simulate the battery temperature change. The model has one-dimensional electrochemical of semi-solid-state lithium-ion battery and three-dimensional heat transfer. In the end, the experimental results of the ITRI were compared to verify the accuracy of the simulated model.
第1章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究方法 2
第2章 鋰電池簡介 3
2.1-1液態鋰離子電池 4
2.1-2固態鋰離子電池 4
2.1-3半固態鋰離子電池 5
2.2 電動車電池規範 6
第3章 文獻回顧 10
3.1 電池穿刺模擬文獻 10
3.2-1 Chiu模型 14
3.2-2 Wang模型 23
3.2-3 Zhao模型 30
3.2-4 Liang模型 38
3.2-5 Fang模型 47
3.3模型總結 52
第4章 鋰離子電池模型 56
4.1 液態鋰離子電池模型簡介 56
4.2-1電極-電解液反應動力學 58
4.2-2電極物質守恆 62
4.2-3電極電荷傳遞 63
4.2-4電解液物質守恆 65
4.2-5電極與電解液電荷傳輸 66
4.3半固態鋰離子電池模型 68
4.3-1負極-固態電解質反應動力學 70
4.3-2固態電解質物質守恆 70
4.3-3固態電解質電荷傳輸 71
4.3-4半固態鋰離子電池統御方程式與邊界條件 72
4.4模擬結果 76
第5章 電池穿刺之三維熱傳模型 80
5.1電化學反應發熱源 81
5.2熱裂解反應發熱源 83
5.3-1發熱源轉換成邊界條件 87
5.3-2電池表面散熱 89
5.4熱傳模型架構 89
5.5模擬與實驗結果討論 93
5.6 電池穿刺模型總結 104
第6章 結論與未來展望 108
6.1結論 108
6.1-1半固態鋰離子電池模型 108
6.1-2半固態鋰離子電池穿刺的熱傳模型 109
6.2未來展望 109
6.2-1鋰離子電池三維模型 110
6.2-2鋰電池動態穿刺模型 110
參考文獻 111
[1].https://zh.wikipedia.org/wiki/%E9%B9%BC%E6%80%A7%E9%9B%BB%E6%B1%A0
[2].https://zh.wikipedia.org/wiki/%E9%93%85%E9%85%B8%E8%93%84%E7%94%B5%E6%B1%A0
[3].https://zh.wikipedia.org/wiki/%E9%95%8D%E6%B0%A2%E7%94%B5%E6%B1%A0
[4].https://zh.wikipedia.org/wiki/%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0
[5].http://www.hn-jlkj.com/products_detail/productId=42.html
[6].https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_362484189.pdf
[7].https://www.bnext.com.tw/article/42875/samsung-note-7-explore-reasons
[8].http://news.ltn.com.tw/news/life/breakingnews/2460104
[9].LMB_半固態鋰電池電解液效應資料
[10].Kuan-Cheng Chiu, Chi-Hao Lin, Sheng-Fa Yeh, Yu-Han Lin, Kuo-Ching Chen, An electrochemical modeling of lithium-ion battery nail penetration, Journal of Power Source251 (2014) 254-263
[11].Wei Zhao, Gang Luo, Chao-Yang Wang, Modeling Nail Penetration Process in Large-Format Li-ion Cells, Journal of The Electrochemical Society, 162(1)A207-A217(2015)
[12].Hossein Maleki, Jason N.Howard, Internal short circuit in Li-ion cells, Journal of Power Sources 191 (2009)568-574
[13].Rui Zhao, Jie Liu, Junjie Gu, A comprehensive study on Li-ion battery nail penetrations and the possible solutions, Energy 123 (2017) 392-401
[14].Rui Zhao, Jie Liu, Junjie Gu, Simulation and experimental study on lithium ion battery short circuit, Applied Energy 173 (2016)29-39
[15].Guozhou Liang, Yiming Zhang, Qi Han, Zhaoping Liu, Zhen Jiang, A novel 3D-layered electrochemical-thermal coupled model strategy for the nail-penetration process simulation, Journal of Power Sources 342 (2017) 836-845
[16].Premanand Ramadass, Weifeng Fang, Zhengming (John) Zhang, Study of internal short in a Li-ion cell I. Test method development using infrad-red imaging technique, Journal of Power Sources 248 (2014) 769-776
[17].Weifeng Fang, Premanand Ramadass, Zhengming (John) Zhang, Study of internal short in a Li-ion cell II. Numerical investigation using a 3D electrochemical-thermal model, Journal of Power Sources 248 (2014) 1090-1098
[18].T.D.Hatchard, D.D. MacNeil, A. Basu, J.R. Dahn, Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells, Journal of The Electrochemical Society, 148 (7) A755-A761 (2001)
[19].Gi-Heon Kim, Ahmad Pesaran, Robert Dpotnitz, A three-dimensional thermal abuse model for lithium-ion cells, Journal of Power Sources 170 (2007) 476-489
[20].Joshua Lamb, Christopher J. Orendorff, Evaluation of mechanical abuse techniques in lithium ion batteries, Journal of Power Sources 247 (2014) 189-196
[21].Wei Cai, Hsin Wang, Hossein Maleki, Jason Howard, Edgar Lara-Curzio, Experimental Simulation of internal short circuit in Li-ion and Li-ion-polymer cells, Journal of Power Sources 196 (2011) 7779-7783
[22].Elham Sahraei, Joseph Meier, Tomasz Wierzbicki, Characterizing and modeling mechanical properties and onset of short circuit of three of lithium-ion pouch cells, Journal of Power Sources 247 (2014) 503-516
[23].J.Newman, W. Tiedemann, Porous-Electrode Theory with Battery Applications, AICHE Journal, 21 , 25 (1975)
[24].J.Newman and K. E. Thomas-Alyea, Electrochemical Systems, Third ed, Wiley-
Interscience,Barkeley (2004)
[25].張建邦, 快速電化學法估算電動車之電池組狀態, 國立台灣大學工學院應用力學研究所碩士論文(2016)
[26].李哲鋒, 利用電化學法探討鋰離子電池連續充放電行為與溫度管理以及應力分析, 國立台灣大學工學院應用力學研究所碩士論文(2015)
[27].張岑安, 全固態鋰電池之彎折分析, 國立台灣大學工學院應用力學研究所碩士論文(2017)
[28].R.Spotnitz, J. Franklin, Abuse behavior of high power, lithium-ion cells, Journal of Power Sources 113 (2003) 81-100
[29].Ulrich von Sacken, Eric Nodwell, Avtar Sundher, J. R. Dahn, Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries, Journal of Power Sources 54 (1995) 240-245
[30].Cheon-Soo Kim, Jin-Seong Yoo, Kyung-Min Jeong, Keon Kim, Cheol-Woo Yi, Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration, Journal of Power Sources 289 (2015) 41-49
[31].T.D. Hatchard, S. Trussler, J.R. Dahn, Building a “smart nail” for penetration tests on Li-ion cells, Journal of Power Sources 247 (2014) 821-823
[32].Chao Zhang, Shriram Santhanagopalan, Michael A. Sprague, Ahmad A. Pesaran, Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse, Journal of Power Sources 290 (2015) 102-113
[33].Chao Zhang, Shriram Santhanagopalan, Michael A.Sprague, Ahmad A. Pesaran, A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests, Journal of Power Sources 298 (2015) 309-321
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top