跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江偉申
研究生(外文):Chiang, Wei-Shen
論文名稱:利用非水溶液製備銅錳薄膜之研究
論文名稱(外文):Electrodeposition of CuMn Films in Non-aqueous Solution
指導教授:吳樸偉
指導教授(外文):Wu, Pu-Wei
口試委員:鄭裕庭陳智陳柏均
口試委員(外文):Cheng, Yu-TingChen, ChihChen, Po-Chun
口試日期:2017-08-25
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:118
中文關鍵詞:銅錳合金非水溶液電鍍擴散阻障層
外文關鍵詞:Cu-Mn alloyNon-aqueous solutionElectrodepositionDiffusion barrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
遵循摩爾定律下,積體電路不斷的微縮,在導線線寬180 nm以後由原本銅線取代鋁線,因使用鋁線本身導線電阻高會有嚴重的RC延遲效應,且鋁線有嚴重的電遷移效應使導線壽命嚴重縮短,因此使用銅可改善上述現象,目前以銅做為導線已經為一種趨勢,而製程中以銅取代鋁做為金屬導線材料後,為了克服銅與矽基材間相互擴散的問題,必須在銅與矽基材之間沉積具有高熱穩定性及良好界面附著性的擴散阻障層。本實驗利用金屬錳具有較大的擴散係數及在升溫時與二氧化矽有高度反應能力,因此在高溫驅動下能與二氧化矽層相互作用,自行形成擴散阻障層,以防止銅與矽基材互相擴散。
本研究利用兩種非水溶液,分別為有機溶劑和深共晶溶劑,進行銅錳薄膜的脈衝電鍍,將銅錳薄膜沉積在銅晶片上,並以不同環境進行銅錳薄膜的熱處理,以觀察金屬錳是否與二氧化矽層反應,形成擴散阻障層。銅錳薄膜分析以掃描式電子顯微鏡(SEM)觀察銅錳薄膜之表面形貌和橫截面;能量散射光譜儀(EDS)進行銅錳薄膜的定性及定量;X-ray繞射儀(XRD)進行相的分析鑑定;X-ray光電子能譜(XPS)分析表面形貌各元素價態;利用交流阻抗分析(EIS)、循環伏安法(CV)、極化曲線(polarization curve)和熱重分析儀(TGA)等電化學分析非水溶液電解液之特性。
本研究結果顯示有機溶液添加冰醋酸後,電解液之導電度大幅提升,且解離的醋酸根離子會與銅錳錯合,使銅錳薄膜較好還原與沉積,但添加的冰醋酸後有微量水分,因此所沉積的銅錳薄膜為氧化錳顆粒,且在400 oC熱處理時氧化錳顆粒無法順利擴散至二氧化矽層形成擴散阻障層,故將電鍍用的電解液由有機溶液改為深共晶溶液。深共晶溶液具有非常良好的導電性,在電解液之銅錳比例為1:10 (Cu:Mn=0.006 M:0.03 M)、電流密度為1 mA/cm2及電鍍15分鐘可沉積出均勻且平整的銅錳薄膜,經分析確認薄膜成為金屬銅與微量氧化錳,且銅薄膜中固溶著錳原子。將銅錳薄膜在400 oC下熱處理後,固溶於銅薄膜中的錳原子順利擴散至下層形成擴散阻障層,故利用深共晶溶液成功製備銅錳薄膜且熱處理後也使錳擴散形成擴散阻障層。
The feature size of integrated circuit is constantly miniaturized as predicted by Moore’s law. As the wire dimension was reduced to less than 0.18 µm, aluminum wire was replaced by copper which exhibits higher conductivity and reduced RC delay. However, rapid diffusion of copper to the underneath silicon layer is a serious issue, resulting in excessive defects. Therefore, a robust diffusion barrier is required. Desirable barriers should meet certain criteria such as high thermal stability and sufficient adhesion with Cu interconnect and dielectric layer. In this study, manganese is chosen as the model material for self-forming diffusion barrier due to its large diffusion coefficient and strong reactivity toward the dielectric layer at elevated temperature. By co-deposition of Cu-Mn alloyed film followed by thermal annealing, Mn atoms diffuse faster than Cu atoms to the dielectric, and an ultra-thin film of Mn-silicate is formed at the interface between the Cu interconnect and dielectrics.

In this work, two different non-aqueous solvent systems, organic solvent and deep eutectic solvent, are employed as the deposition baths. Pulse-current electrodeposition is applied for the deposition of copper-manganese films on Cu@Si wafers. A Mn-silicate thin layer is formed by heat treatment with controlled temperature profile. Surface morphologies, film thickness and composition of the deposited Cu-Mn films are examined by SEM and EDS; further compositional analysis is conducted by XRD and XPS. Characterization of the performance for electrolytes are performed by EIS, CV, TGA, and polarization curve.

For organic solvent based deposition bath, it is proven that the electrical conductivity is greatly improved with the addition of some acetic acid. The acetic acid is also complexing metal ions and hence renders better film quality with a layer amount of deposits. However, trace amount of water exhibited in acetic acid resulted in the oxidation of as-deposited films. These oxide particles were reluctant toward diffusion and thus no barrier material was formed. Therefore, deep eutectic solvent was then adopted for electrodeposition baths. DES baths showed much better conductivity, hence improved morphology control and current efficiency could be expected. Several parameters were examined, and optimized results were obtained. The as-deposited films were then characterized and confirmed with solid-soluted Mn atoms in copper lattices. Under 400 ˚C, these Mn atoms were successfully diffused to the underneath dielectric layer and formed a diffusion barrier layer as expected previously.
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XIII

第一章、 前言 1
第二章、 文獻回顧 4
2.1、擴散阻障層 4
2.1.1、擴散阻障層的機制 4
2.1.2、擴散阻障層的選擇與製備 7
2.2、非水溶液電解液 17
2.2.1、有機溶液 17
2.2.2、離子液體 19
2.2.3、深共晶溶液 21
第三章、 實驗步驟 26
3.1、實驗設計 26
3.1.1、實驗流程 26
3.1.2、實驗藥品與基材 28
3.1.3、實驗儀器 30
3.2.、薄膜的特性分析 31
3.2.1、掃描式電子顯微鏡 (SEM, scanning electron microscope)、能量散射光譜儀 (EDS, energy-dispersive X-ray spectroscopy) 31
3.2.2、X-ray繞射儀 (XRD, X-ray diffraction) 32
3.2.3、X-ray線光電子能譜儀 (XPS, X-ray photoelectron spectroscopy) 33
3.3、電解液性質分析 33
3.3.1、交流阻抗 (EIS, electrochemical impedance spectroscopy) 33
3.3.2、極化曲線 (Polarization curve) 35
3.3.3、循環伏安法 (CV, cyclic voltammetry) 35
3.3.4、熱重/示差熱分析儀 (TGA, thermogravimetric analysis) 35
第四章、 有機溶液 (Organic solvent) 39
4.1、實驗流程圖 39
4.2、電解液的配置 40
4.3、結果與討論 42
4.3.1、有機電解液未加入添加劑之電鍍 42
4.3.2、添加劑對製備銅錳薄膜的影響 46
4.3.3、加入添加劑對電解液的影響 60
4.3.4、銅錳薄膜熱處理之變化 69
4.4、結論 75
第五章、 深共晶溶液 (Deep eutectic solvent) 76
5.1、實驗流程圖 76
圖5.1.1實驗流程圖。 76
5.2、深共晶溶液的配置 77
5.3、結果與討論 79
5.3.1、不同製備條件對銅錳合金薄膜的影響 79
5.3.2、電解液的電化學分析 97
5.3.3、不同熱處理環境對銅錳合金薄膜的影響 104
5.4、結論 112
第六章、 結論 113
第七章、 參考文獻 115
1. Wang, Y., Chen, X., Ma, W., Shang, Y., Lei, Z., & Xiang, F. “Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization.” Applied Surface Science, 396 (2017) 333-338.
2. Nguyen, M. P., Sutou, Y., & Koike, J. Thin Solid Films, 580 (2015), 56-60.
3. Rha, S. K., Lee, W. J., Lee, S. Y., Hwang, Y. S., Lee, Y. J., Kim, D. I. & Park, C. O. Thin Solid Films, 320(1) (1998) 134-140.
4. Wong, H. Y., Shukor, N. M., & Amin, N. Microelectronics journal, 38(6) (2007) 777-782.
5. Wang, Y., Cao, F., Yang, X. D., & Ding, M. H. Materials Chemistry and Physics, 117(2) (2009) 425-429.
6. Oku, T., Kawakami, E., Uekubo, M., Takahiro, K., Yamaguchi, S., Murakami, M. Applied Surface Science, 99 (1996) 265-272.
7. Ting, C. Y. Journal of Vacuum Science and Technology, 21(1) (1982) 14-18.
8. Koike, J., Haneda, M., Iijima, J., Otsuka, Y., Sako, H., Neishi, K. Journal of applied physics, 102(4) (2007) 043527.
9. Lee, W., Cho, H., Cho, B., Kim, J., Kim, Y. S., Jung, W. G., Lee, J. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(6) (2000) 2972-2977.
10. Perng, D. C., Yeh, J. B., Hsu, K. C., Tsai, S. W. Thin Solid Films, 518(6) (2010) 1648-1652.
11. Iijima, J., Fujii, Y., Neishi, K., Koike, J. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 27(4) (2009) 1963-1968.
12. Gambino, J. P., In Physical and Failure Analysis of Integrated Circuits (IPFA), 2010 17th IEEE International Symposium on the IEEE, (2010) 1-7.
13. Joi, A., Akolkar, R., & Landau, U. Journal of The Electrochemical Society, 160(12) (2013) 3145-3148.
14. Zandrahimi, M. In Advanced Materials Research, 829 (2014) 451-455.
15. Haerifar, M., & Zandrahimi, M. Applied Surface Science, 284 (2013) 126-132.
16. Maltanava, H. M., Vorobyova, T. N., & Vrublevskaya, O. N.. Surface and Coatings Technology, 254 (2014) 388-397.
17. Nicolet, M. A. Thin Solid Films, 52(3) (1978) 415-443.
18. Nicolet, M. A., & Bartur, M. Journal of Vacuum Science and Technology, 19(3) (1981) 786-793.
19. Van Gurp, G. J., Daams, J. L. C., Van Oostrom, A., Augustus, L. J. M., & Tamminga, Y. Journal of Applied Physics, 50(11) (1979) 6915-6922.
20. Kanamori, S. Thin solid films, 136(2) (1986) 195-214.
21. Wittmer, M. Applied Physics Letters, 36(6) (1980) 456-458.
22. Uekubo, M., Oku, T., Nii, K., Murakami, M., Takahiro, K., Yamaguchi, S., & Ohta, T. Thin Solid Films, 286(1) (1996) 170-175.
23. Bower, R. W. Applied Physics Letters, 23(2) (1973) 99-101.
24. Oku, T., Kawakami, E., Uekubo, M., Takahiro, K., Yamaguchi, S., & Murakami, M. Applied Surface Science, 99(4) (1996) 265-272.
25. Reid, J. S., Kolawa, E., Ruiz, R. P., & Nicolet, M. A. Thin Solid Films, 236(1-2) (1993) 319-324.
26. Hara, T., Kitamura, T., Tanaka, M., Kobayashi, T., Sakiyama, K., Onishi, & Yamashita, N.. Journal of The Electrochemical Society, 143(11) (1996) 264-266.
27. Reid, J. S., Kolawa, E., Garland, C. M., Nicolet, M. A., Cardone, F., Gupta, D., & Ruiz, R. P. Journal of applied physics, 79(2) (1996) 1109-1115.
28. Ono, H., Nakano, T., & Ohta, T. Applied Physics Letters, 64(12) (1994) 1511-1513.
29. Holloway, K., Fryer, P. M., Cabral Jr, C., Harper, J. M. E., Bailey, P. J., & Kelleher, K. H. Journal of Applied Physics, 71(11) (1992) 5433-5444.
30. Rha, S. K., Lee, W. J., Lee, S. Y., Kim, D. W., Park, C. O., & Chun, S. S. Journal of materials research, 12(12) (1997) 3367-3372.
31. Chyan, O., Arunagiri, T. N., & Ponnuswamy, T. Journal of The Electrochemical Society, 150(5) (2003) 347-350.
32. Koike, J., & Wada, M. Applied Physics Letters, 87(4) (2005) 041911.
33. Seah, M. P., & Hondros, E. D. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 335(1601) (1973) 191-212.
34. Gokcen, N. A. Journal of phase equilibria, 14(1) (1993) 76-83.
35. Su, Y. H., Wu, S. A., Wu, C. Y., Wang, Y. L., & Lee, W. H. IEEE Transactions on Device and Materials Reliability, 15(1) (2015) 47-53.
36. Chen, S. T., & Chen, G. S. Journal of Alloys and Compounds, 648 (2015) 474-480.
37. Moon, D. Y., Han, D. S., Park, J. H., Shin, S. Y., Park, J. W., Kim, B. M., & Cho, J. Y. Thin Solid Films, 521 (2012) 146-149
38. Heo, P., Ichino, R., & Okido, M. Electrochimica acta, 51(28) (2006) 6325-6330.
39. Chaure, N. B., Jayakrishnan, R., Nair, J. P., & Pandey, R. K. Semiconductor science and technology, 12(9) (1997) 1171.
40. Salomé, S., Pereira, N. M., Ferreira, E. S., Pereira, C. M., & Silva, A. F. Journal of Electroanalytical Chemistry, 703 (2013) 80-87.
41. Wilkes, J. S., Levisky, J. A., Wilson, R. A., & Hussey, C. L. Inorganic Chemistry, 21(3) (1982) 1263-1264.
42. Wilkes, J. S., & Zaworotko, M. J. Journal of the Chemical Society, Chemical Communications, (13) (1992) 965-967.
43. Docherty, K. M., & Kulpa Jr, C. F. Green Chemistry, 7(4) (2005) 185-189.
44. Domínguez de María, P. Angewandte Chemie International Edition, 47(37) (2008) 6960-6968.
45. Pinto, P. C., SARAIVA, M. L. M., & Lima, J. L. Analytical Sciences, 24(10) (2008) 1231-1238.
46. Ali, M. R., Nishikata, A., & Tsuru, T. Electrochimica acta, 42(12) (1997) 1819-1828.
47. Chen, J., Xu, B., & Ling, G. Materials Chemistry and Physics, 134(2) (2012) 1067-1071.
48. Plechkova, N. V., & Seddon, K. R. Chemical Society Reviews, 37(1) (2008) 123-150.
49. Zhang, Q., Vigier, K. D. O., Royer, S., & Jérôme, F. Chemical Society Reviews, 41(21) (2012) 7108-7146.
50. Smith, E. L., Abbott, A. P., & Ryder, K. S. Chemical reviews, 114(21) (2014) 11060-11082.
51. Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. Chemical Communications, (1) (2003) 70-71.
52. Hsiu, S. I., Huang, J. F., Sun, I. W., Yuan, C. H., & Shiea, J. Electrochimica Acta, 47(27) (2002) 4367-4372.
53. Abbott, A. P., Capper, G., Davies, D. L., & Rasheed, R. K. Chemistry-A European Journal, 10(15) (2004) 3769-3774.
54. Abbott, A. P., Barron, J. C., Frisch, G., Ryder, K. S., & Silva, A. F. Electrochimica Acta, 56(14) (2011) 5272-5279.
55. Abood, H. M., Abbott, A. P., Ballantyne, A. D., & Ryder, K. S. Chemical Communications, 47(12) (2011) 3523-3525.
56. RIBEIRO, D., Souza, C. A. C., & Abrantes, J. C. C. Revista IBRACON de Estruturas e Materiais, 8(4) (2015) 529-546.
57. Diard, J. P., Le Gorrec, B., & Montella, C. ‘‘Handbook of electrochemical impedance spectroscopy.’’ Diffusion Impedances. 2012.
58. Hong-Ying Chen, Da-Je Hsu. Journal of Alloys and Compounds, 598 (2014) 23–26.
59. AWa´skowska, L Gerward, J Staun Olsen, S Steenstrup and E Talik. Jouranl Of Physics: Condens. Matter, 13 (2001) 2549–2562.
60. T.K. Le , D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, A. Maignan. Journal of Solid State Chemistry, 184 (2011) 2387–2392.
61. Sung-Te Chen, Giin-Shan Chen. Journal of Alloys and Compounds, 648 (2015) 474–480.
62. Yang, C. Y., Jeng, J. S., & Chen, J. S.. Thin Solid Films, 420 (2002) 398-402.
63. P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey. Journal of Vacuum Science & Technology A, 23 (2005) 1152.
64. Chen, H. Y., & Hsu, D. J. Journal of Alloys and Compounds, 598 (2014) 23-26.
65. Ghijsen, J., Tjeng, L. V., Van Elp, J., Eskes, H., Westerink, J., Sawatzky, G. A., & Czyzyk, M. T. Physical Review B, 38(16) (1988) 11322.
66. Vepřek, S., Cocke, D. L., Kehl, S., & Oswald, H. R. Journal of Catalysis, 100(1) (1986) 250-263.
67. Chourasia, A. R., & Chopra, D. R. Surface Science Spectra, 3(1) (1994) 74-81.
68. Töpfer, J., Feltz, A., Gräf, D., Hackl, B., Raupach, L., & Weissbrodt, P. Physica Status Solidi (a), 134(2) (1992) 405-415.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top