跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林詠凱
研究生(外文):Yong-Kai Lin
論文名稱:高效率雙向直流轉換器的研製
論文名稱(外文):Design and Implementation of a High Efficiency Bidirectional DC/DC Converter
指導教授:賴炎生
指導教授(外文):Yen-Shin Lai
口試委員:黃明熙方志行
口試委員(外文):Ming-Xi HuangZhi-Xing Fang
口試日期:2006-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:79
中文關鍵詞:雙向直流轉換器燃料電池
外文關鍵詞:Bidirectional DC/DC ConverterFuel Cell
相關次數:
  • 被引用被引用:13
  • 點閱點閱:712
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
本論文之目的在於研製一高效率的雙向直流轉換器,此轉換器主要應用於燃料電池(或負載)與蓄電池之間而且具有雙向能量傳輸的功能。當轉換器處於降壓模式時,轉換器以定電壓的方式提供能量給負載;若轉換器的工作模式為升壓模式時,則將燃料電池或負載端的回饋能量以定電流方式對蓄電池充電。本文所研製的雙向直流轉換器其詳細規格包含額定功率:500 W以及電壓轉換額定:24 V/ 44 V。
本論文首先探討雙向轉換器之原理與架構,其次以SIMULINK初步驗證所設計之雙向轉換器之功能,最後完成驅動電路製作。本論文以dSPACE為實驗平台而驗證雙向電源轉換器實作及設計分析是否正確。經實驗結果證實,本論文所研製之雙向電源轉換器確實可完成雙向能量傳遞功能,且轉換器效率可達90%以上。
The objective of this thesis is to design and implement a high efficiency bidirectional DC/DC converter for fuel cell systems, which converts the energy from battery (or load) to fuel cell and visa versa. When the converter operates in buck mode, the power is provided by battery with constant voltage. In contrast, when the converter operates in boost mode, the battery is charged by fuel cells or regenerative energy of load with constant current. The details of the specification include:
Power rating = 1.5 kW
Voltage rating =24V/45V
First, the operation principle of bidirectional DC/DC converter is described. Then, the designed bidirectional DC/DC converter is verified by SIMULINK and the converter is realized. Moreover, the implemented bidirectional DC/DC converter controlled by dSPACE is verified by experimental results. Experimental results confirm that the energy can be converted in two directions by the implemented bidirectional DC/DC converter and the efficiency is over than 90%.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1研究動機 1
1.2研究目的 7
1.3內容大綱 8
第二章 雙向直流轉換器原理分析 9
2.1雙向直流轉換器動作原理 9
2.2 降壓模式之數學模型與轉移函數推導 13
2.3 升壓模式之數學模型與轉移函數推導 20
2.4 被動元件參數設計 27
第三章 雙向直流轉換器控制器設計與模擬 32
3.1控制法則比較 32
3.2降壓模式之控制器設計與模擬 38
3.3升壓模式之控制器設計與模擬 46
第四章 實驗系統與結果 51
4.1實驗系統 51
4.2實驗結果 60
第五章 結論與未來工作 75
5.1結論 75
5.2未來工作 75
[1]BP, http://www.bp.com/home.do?categoryId=1, 2006.
[2]衣寶廉,「燃料電池-原理與應用」,五南圖書出版公司,民國94年。
[3]溫武義編譯,「燃料電池-原理與應用」,全華科技圖書股份有限公司,民國93年。
[4]G. Hoogers, Fuel Cell Technology Hand Book, Florida, CRC Press, 2002.
[5]S. J. Jang, T. W. Lee, W. C. Lee and C. Y. Won, “Bi-directional dc-dc converter for fuel cell generation system,” in Proc. of IEEE Power Electronics Specialists Conference, Vol. 6, pp. 4722-4728, 2004.
[6]H. Tao, A. Kotsopoulos, J. L. Duarte and M. A. M. Hendrix, “Family of multiport bidirectional DC-DC converters,” IEE Proceedings of Electric Power Applications, Vol. 153, No. 3, pp. 451-458, 2006.
[7]E. S. Kilders, J. B. Ejea, A. Ferreres, E. Maset, V. Esteve, J. Jordan, A. Garrigos and J. Calvente, “Bidirectional Coupled Inductors Step-up Converter for Battery Discharging-Charging,” in Proc. of IEEE Power Electronics Specialists Conference, pp. 64-68, 2005.
[8]M. Jain, M. Daniele and P. K. Jain, “A bidirectional DC-DC converter topology for low power application,” IEEE Transactions on Power Electronics, Vol. 15, No. 4, pp. 595-606, 2000.
[9]E. Hiraki, M. Kurokawa, S. Sugimoto and M. Nakaoka, “A novel resonant DC link bidirectional three phase PWM converter for battery energy storage system,” in Proc. of IEEE Power Electronics and Drive Systems, Vol. 1, pp. 163-168, 1997.
[10]華志強、吳俊緯、黃啟倫,「燃料電池雙向補償DC/DC電力轉換器之研製」,電力電子,第3卷,第3期,頁47-52,民國94年。
[11]C. Zhao, D. Xu and H. Fan, “A PWM plus phase-shift control bidirectional DC-DC converter,” in Proc. of IEEE Applied Power Electronics Conference and Exposition, Vol. 2, pp. 641-647, 2003.
[12]Y. Song and P. N. Enjeti, “A new soft switching technique for bi-directional power flow, full-bridge DC-DC converter,” in Proc. of IEEE Industry Applications Conference, Vol. 4, pp. 2314-2319, 2002.
[13]H. L. Chan, K. W. E. Cheng and D. Sutanto, Bidirectional phase-shifted DC-DC converter, Electronics Letters, Vol. 35, No. 7, pp. 523-524, 1999.
[14]C. C. Hua and M. Y. Lin, “A study of charging control of lead-acid battery for electric vehicles,” IEEE Proceedings of Industrial Electronics, Vol. 1, pp. 135-140, 2000.
[15]尤如瑾,「燃料電池汽車市場趨勢分析」,電力電子,第3卷,第5期,頁97-101,民國94年。
[16]李麗玲,「42伏汽車電力系統探討」,電力電子,第2卷,第2期,頁42-49,民國93年。
[17]R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, 2nd. Massachusetts: Kluwer Academic Publishers, 2001.
[18]孫清華,「最新可充電電池技術大全」,全華科技圖書股份有限公司,民國92年。
[19]Venable Industries, http://www.venable.biz, 2006.
[20]K. K. Leung and H. S. Chung, “Dynamic hysteresis band control of the buck converter with fast transient response,” IEEE Transactions on Circuits and Systems, Vol. 52, No. 7, pp. 398-402, 2005.
[21]R. Miftakhutdinov, “Analysis and optimization of synchronous buck converter at high slew-rate load current transients,” in Proc. of IEEE Power Electronics Specialists Conference, Vol. 2, pp. 714-720, 2000.
[22]E. J. P. Mascarenhas, “Hysteresis control of a continuous boost regulator,” in Proc. of IEE Static Power Conversion, pp. 7/1-7/4, 1992.
[23]T. Suntio, M. Rahkala, I. Gadoura and K. Zenger, “Dynamic effects of inductor current ripple in peak-current and average-current mode control,” in Proc. of IEEE Industrial Electronics Society, Vol. 2, pp. 1072-1077, 2001.
[24]B. Bryant and M. K. Kazimierczuk, “Modeling the closed-current loop of PWM boost DC-DC converters operating in CCM with peak current-mode control,” IEEE Transactions on Circuits and Systems, Vol. 52, No. 11, pp. 2404-2412, 2005.
[25]T. Suntio, “Analysis and modeling of peak-current-mode-controlled buck converter in DICM,” IEEE Transactions on Industrial Electronics, Vol. 48, No 1, pp 127-135, 2001.
[26]L. H. Dixon, “Average current-mode control of switching power supplies,” Unitrode Power Design Seminar Manual, 1990.
[27]J. M. Benavent, E. Figueres, G. Garcera and M. Pascual, “Robust model-following regulator for average current-mode control of boost DC-DC converters,” IEEE Proceedings of Industrial Electronics, Vol. 2, pp. 715-720, 2005.
[28]Y. W. Lu, G. Feng and Y. F. Liu, “A large signal dynamic model for DC-to-DC converters with average current control,” in Proc. of IEEE Applied Power Electronics Conference and Exposition, Vol. 2, pp. 797-803, 2004.
[29]W. Tang, F. C. Lee, R. B. Ridley, “Small-signal modeling of average current-mode control,” in Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 747-755, 1992.
[30]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, 3rd., New Jersey, John Wiley & Sons, Inc., 2003.
[31]Real-Time Interface to Simulink RT1102 User’s Guide, dSPACE Inc., 1998.
[32]Texas Instruments, http://www.ti.com, 2006.
[33]Floating-Point Controller Board User’s Guide, dSPACE Inc., 1998.
[34]Y. S. Lai, F. S. Shyu and Y. K. Lin, “Novel PWM technique without causing reversal DC-link current for brushless DC motor drives with bootstrap driver,” Conference Record of IEEE IAS Annual Meeting. Vol. 3, pp. 2182-2188, 2005.
[35]ST Microelectronics, L6385: High-Voltage High and Low Side Driver, ST Microelectronics, U.S.A., 1999.
[36]ARNOLD, Power Cores, ARNOLD, U.S.A., 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top