|
(ATSDR), A. f. T. S. a. D. R. (2009). United States Department of Health and Human Services 2009. Draft Toxicological Profile for Phosphate Ester Flame Retardants (September). Abdullah, M., Low, G. K. C., & Matthews, R. W. (1990). Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem.-US, 94, 6820-6825 Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. A. (2010). Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination, 261, 3-18 Antonopoulou, M., Giannakas, A., Bairamis, F., Papadaki, M., & Konstantinou, I. (2017). Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N, S-codoped TiO2 photocatalysts. Chem. Eng. J., 318, 231-239 Antonopoulou, M., Karagianni, P., & Konstantinou, I. K. (2016). Kinetic and mechanistic study of photocatalytic degradation of flame retardant Tris (1-chloro-2-propyl) phosphate (TCPP). Appl. Catal. B: Environ., 192. Armstrong, D. A., Huie, R. E., Lymar, S., Koppenol, W. H., Merényi, G., Neta, P., . . . Wardman, P. (2013). Standard electrode potentials involving radicals in aqueous solution: inorganic radicals. BioInorganic Reaction Mechanisms, 9, 59-61 Arnold, W. A., Oueis, Y., O''Connor, M., Rinaman, J. E., Taggart, M. G., McCarthy, R. E., . . . Latch, D. E. (2017). QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants. Environ. Sci.-Proc. Imp., 19, 324-338. Babich, M. A., Thomas, T. A., & Hatlelid, K. M. (2006). CPSC staff preliminary risk assessment of flame retardant (FR) chemicals in upholstered furniture foam. US Consumer Product Safety Commission, 21. Bacaloni, A., Cucci, F., Guarino, C., Nazzari, M., Samperi, R., & Laganà, A. (2008). Occurrence of organophosphorus flame retardant and plasticizers in three volcanic lakes of central Italy. Environ. Sci. Technol., 42, 1898-1903 Bacsa, R. R., & Kiwi, J. (1998). Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl. Catal. B: Environ., 16, 19-29 Barazesh, J. M., Prasse, C., & Sedlak, D. L. (2016). Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions. Environ. Sci. Technol., 50, 10143-10152 Bester, K. (2007). Personal care compounds in the environment: Pathways, fate and methods for determination: John Wiley & Sons. Betts, K. S. (2013). Exposure to TDCPP appears widespread. Environ. Health Persp., 121, a150. Bichsel, Y., & Von Gunten, U. (2000). Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters. Environ. Sci. Technol., 34, 2784-2791 Bickley, R. I., Gonzalez-Carreno, T., Lees, J. S., Palmisano, L., & Tilley, R. J. D. (1991). A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem., 92, 178-190 Buxton, G. V., Bydder, M., Salmon, G. A., & Williams, J. E. (2000). The reactivity of chlorine atoms in aqueous solution. Part III. The reactions of Cl• with solutes. Phys. Chem. Chem. Phys., 2, 237-245. Byrnell, C. J. A., Coombes, R. G., Hart, L. S., & Whiting, M. C. (1983). The reaction of bromine with cyclohexene in carbon tetrachloride. Part 1. Reactions in the absence of hydrogen bromide; presence of a scavenger. Journal of the Chemical Society, Perkin Transactions 2(8), 1079-1086. Cai, R., Hashimoto, K., Itoh, K., Kubota, Y., & Fujishima, A. (1991). Photokilling of malignant cells with ultrafine TiO2 powder. B. Chem. Soc. Jpn., 64, 1268-1273. Canonica, S., & Tratnyek, P. G. (2003). Quantitative structure‐activity relationships for oxidation reactions of organic chemicals in water. Environ. Toxicol. Chem., 22, 1743-1754 Carneiro, J. T., Yang, C.-C., Moulijn, J. A., & Mul, G. (2011). The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation. J. Catal., 277, 129-133 Chang, S.-m., & Lee, C.-y. (2013). A salt-assisted approach for the pore-size-tailoring of the ionic-liquid-templated TiO2 photocatalysts exhibiting high activity. Appl. Catal. B: Environ., 132, 219-228 Chen, D., Letcher, R. J., & Chu, S. (2012). Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography–tandem quadrupole mass spectrometry. J. Chromatogr. A, 1220, 169-174 Cheng, Y., Sun, H., Jin, W., & Xu, N. (2007). Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation. Chem. Eng. J., 128, 127-133 Chiang, K., Lim, T. M., Tsen, L., & Lee, C. C. (2004). Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl. Catal. A: Gen., 261, 225-237. Chiou, C.-H., Wu, C.-Y., & Juang, R.-S. (2008). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem. Eng. J., 139, 322-329. Choi, H. P. a. W. (2004). Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. J. Phys. Chem. B. Cooper, E. M., Covaci, A., Van Nuijs, A. L. N., Webster, T. F., & Stapleton, H. M. (2011). Analysis of the flame retardant metabolites bis (1, 3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem., 401, 2123 Cristale, J., Dantas, R. F., De Luca, A., Sans, C., Esplugas, S., & Lacorte, S. (2017). Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water. J. Hazard. Mater., 323, 242-249 Crump, D., Chiu, S., & Kennedy, S. W. (2012). Effects of tris (1, 3-dichloro-2-propyl) phosphate and tris (1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells. Toxicol. Sci., 126, 140-148 De Laat, J., & Le, T. G. (2006). Effects of chloride ions on the iron (III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Appl. Catal. B: Environ., 66, 137-146 De Luca, A., He, X., Dionysiou, D. D., Dantas, R. F., & Esplugas, S. (2017). Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate. Chem. Eng. J., 318, 206-213 De Ridder, D. J., Villacorte, L., Verliefde, A. R. D., Verberk, J. Q. J. C., Heijman, S. G. J., Amy, G. L., & Van Dijk, J. C. (2010). Modeling equilibrium adsorption of organic micropollutants onto activated carbon. Water Res., 44, 3077-3086. De Vleeschouwer, F., Van Speybroeck, V., Waroquier, M., Geerlings, P., & De Proft, F. (2007). Electrophilicity and nucleophilicity index for radicals. Organic letters, 9, 2721-2724. Deborde, M., & Von Gunten, U. R. S. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res., 42, 13-51 Deng, J., Shao, Y., Gao, N., Xia, S., Tan, C., Zhou, S., & Hu, X. (2013). Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem. Eng. J., 222, 150-158 Deonarine, A., Lau, B. L. T., Aiken, G. R., Ryan, J. N., & Hsu-Kim, H. (2011). Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Environ. Sci. Technol., 45, 3217-3223 Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ. Sci. Technol., 32, 1549-1558 Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M. C., & Giamello, E. (2007). N-doped TiO2: theory and experiment. Chem. Phys., 339, 44-56 Diebold, U. (2003). Structure and properties of TiO2 surfaces: a brief review. Appl. Phys. A, 76, 681-687 Dishaw, L. V., Powers, C. M., Ryde, I. T., Roberts, S. C., Seidler, F. J., Slotkin, T. A., & Stapleton, H. M. (2011). Is the PentaBDE replacement, tris (1, 3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol. appl. pharm., 256, 281-289 Dunnill, C. W., Kafizas, A., & Parkin, I. P. (2012). CVD production of doped titanium dioxide thin films. Chem. Vapor Depos., 18, 89-101. E., U. E. N. C. f. (1986). Assessment, Guidelines for Carcinogen Risk Assessment https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=54933&CFID=43868260&CFTOKEN=58847449. Eldefrawi, A. T., Mansour, N. A., Brattsten, L. B., Ahrens, V. D., & Lisk, D. J. (1977). Further toxicologic studies with commercial and candidate flame retardant chemicals. Part II. B. Environ. Contam. Tox., 17, 720-726 Elimelech, M., Gregory, J., & Jia, X. (2013). Particle deposition and aggregation: measurement, modelling and simulation: Butterworth-Heinemann. Emerson, D. W. (1994). Microdetermination of bromine, chlorine, and chlorine dioxide in water in any combination. Microchem. j., 50, 116-124 Erickson, P. R., Walpen, N., Guerard, J. J., Eustis, S. N., Arey, J. S., & McNeill, K. (2015). Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution. J. Phys. Chem. A, 119, 3233-3243 EU, E. U. (2008a). Tris[2-Chloro-1-(Chloromethyl)ethyl] Phosphate (TDCP) CAS No.: 13674-87-8. EINECS No.: 237-159-2. Risk Assessment Report. Evenset, A., Leknes, H., Christensen, G. N., Warner, N., Remberger, M., & Gabrielsen, G. W. (2009). Screening of new contaminants in samples from the Norwegian Arctic: Silver, Platinum, Sucralose, Bisphenol A, Tetrabrombisphenol A, Siloxanes, Phtalates (DEHP), Phosphororganic flame retardants. Fang, C., Xiao, D., Liu, W., Lou, X., Zhou, J., Wang, Z., & Liu, J. (2016). Enhanced AOX accumulation and aquatic toxicity during 2, 4, 6-trichlorophenol degradation in a Co (II)/peroxymonosulfate/Cl− system. Chemosphere, 144, 2415-2420 Farhat, A., Buick, J. K., Williams, A., Yauk, C. L., O''Brien, J. M., Crump, D., . . . Kennedy, S. W. (2014a). Tris (1, 3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos. Toxicol. appl. pharm., 275, 104-112 Farhat, A., Crump, D., Porter, E., Chiu, S., Letcher, R. J., Su, G., & Kennedy, S. W. (2014b). Time‐dependent effects of the flame retardant tris (1, 3‐dichloro‐2‐propyl) phosphate (TDCPP) on mRNA expression, in vitro and in ovo, reveal optimal sampling times for rapidly metabolized compounds. Environ. Toxicol. Chem., 33, 2842-2849 French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., & Baveye, P. C. (2009). Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol., 43, 1354-1359 Friedmann, D., Mendive, C., & Bahnemann, D. (2010). TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B: Environ., 99, 398-406 Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238, 37. Gallard, H., Leclercq, A., & Croué, J.-P. (2004). Chlorination of bisphenol A: kinetics and by-products formation. Chemosphere, 56, 465-473 Gallard, H., & von Gunten, U. (2002). Chlorination of phenols: kinetics and formation of chloroform. Environ. Sci. Technol., 36, 884-890 García-Ripoll, A., Amat, A. M., Arques, A., Vicente, R., López, M. F., Oller, I., . . . Gernjak, W. (2007). Increased biodegradability of UltracidTM in aqueous solutions with solar TiO2 photocatalysis. Chemosphere, 68, 293-300 Goncalves, M. S. T., Oliveira-Campos, A. M. F., Pinto, E. M. M. S., Plasencia, P. M. S., & Queiroz, M. J. R. P. (1999). Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere, 39, 781-786 Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2010). Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ. Sci. Technol., 44, 6822-6828 Green, N., Schlabach, M., Bakke, T., Brevik, E., Dye, C., Herzke, D., . . . Schøyen, M. (2008). Screening of selected metals and new organic contaminants 2007. Phosphorus flame retardents, polyfluorinated organic compounds, nitro-PAHs, silver, platinum and sucralose in air, wastewater treatment falcilities, and freshwater and marine recipients. Guillard, C., Disdier, J., Monnet, C., Dussaud, J., Malato, S., Blanco, J., . . . Herrmann, J.-M. (2003). Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Appl. Catal. B: Environ., 46, 319-332 Guo, K., Wu, Z., Shang, C., Yao, B., Hou, S., Yang, X., . . . Fang, J. (2017). Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water. Environ. Sci. Technol., 51, 10431-10439 Guo, Y., Lou, X., Xiao, D., Xu, L., Wang, Z., & Liu, J. (2012). Sequential reduction–oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates. J. Hazard. Mater., 241, 301-306 Hansch, C., Leo, A., & Taft, R. W. (1991). A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev., 91, 165-195 Hao, W. C., Zheng, S. K., Wang, C., & Wang, T. M. (2002). Comparison of the photocatalytic activity of TiO2 powder with different particle size. J. Mater. Sci. Lett., 21, 1627-1629 Harada, K., Hisanaga, T., & Tanaka, K. (1990). Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions. Water Res., 24, 1415-1417 Hasegawa, K., & Neta, P. (1978). Rate constants and mechanisms of reaction of chloride (Cl2-) radicals. J. Phys. Chem., 82, 854-857 Hasnat, M. A., Siddiquey, I. A., & Nuruddin, A. (2005). Comparative photocatalytic studies of degradation of a cationic and an anionic dye. Dyes Pigments, 66, 185-188 Heeb, M. B., Criquet, J., Zimmermann-Steffens, S. G., & Von Gunten, U. (2014). Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds—A critical review. Water Res., 48, 15-42 Henderson, M. A. (2011). A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep., 66, 185-297 Her, N., Park, J.-S., Yoon, J., Sohn, J., Lee, S., & Yoon, Y. (2011). Comparative study of sonocatalytic enhancement for removal of bisphenol A and 17α-ethinyl estradiol. Ind. Eng. Chem. Res., 50, 6638-6645 Hernández-Alonso, M. D., Fresno, F., Suárez, S., & Coronado, J. M. (2009). Development of alternative photocatalysts to TiO2: challenges and opportunities. Energ. Environ. Sci., 2(12), 1231-1257. Hewitt, J. P. (1999). Formulating water-resistant TiO2 sunscreens. Cosmet. Toiletries, 114, 59-63. Hidaka, H., Nohara, K., Zhao, J., Serpone, N., & Pelizzetti, E. (1992). Photo-oxidative degradation of the pesticide permethrin catalysed by irradiated TiO2 semiconductor slurries in aqueous media. J. Photoch. Photobio. A, 64, 247-254 Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev., 95, 69-96 Horikoshi, S., Tokunaga, A., Watanabe, N., Hidaka, H., & Serpone, N. (2006). Environmental remediation by an integrated microwave/UV illumination technique: IX. Peculiar hydrolytic and co-catalytic effects of platinum on the TiO2 photocatalyzed degradation of the 4-chlorophenol toxin in a microwave radiation field. J. Photoch. Photobio. A, 177, 129-143 Hotze, E. M., Bottero, J.-Y., & Wiesner, M. R. (2010). Theoretical framework for nanoparticle reactivity as a function of aggregation state. Langmuir, 26, 11170-11175 Hu, A., Zhang, X., Luong, D., Oakes, K. D., Servos, M. R., Liang, R., . . . Zhou, Y. (2012). Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment. Waste Biomass Valori., 3, 443-449 Hu, Q., Zhang, C., Wang, Z., Chen, Y., Mao, K., Zhang, X., . . . Zhu, M. (2008). Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2. J. Hazard. Mater., 154, 795-803 Hudec, T., Thean, J., Kuehl, D., & Dougherty, R. C. (1981). Tris (dichloropropyl) phosphate, a mutagenic flame retardant: frequent cocurrence in human seminal plasma. Science, 211, 951-952. Huie, R. E., Clifton, C. L., & Neta, P. (1991). Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 38, 477-481. Ishibashi, K.-i., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun., 2, 207-210 Jia, L., Shen, Z., Guo, W., Zhang, Y., Zhu, H., Ji, W., & Fan, M. (2015). QSAR models for oxidative degradation of organic pollutants in the Fenton process. J. Taiwan Inst. Chem. E., 46, 140-147 Jiang, D., Zhao, H., Zhang, S., & John, R. (2004). Kinetic study of photocatalytic oxidation of adsorbed carboxylic acids at TiO2 porous films by photoelectrolysis. J. Catal., 223, 212-220 Jiang, G., Wei, M., Yuan, S., & Chang, Q. (2016). Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO2 nanocrystals. Appl. Surf. Sci., 362, 418-426 Jovanovic, S. V., Tosic, M., & Simic, M. G. (1991). Use of the Hammett correlation and. delta.+ for calculation of one-electron redox potentials of antioxidants. J. Phys. Chem., 95, 10824-10827. Kaneco, S., Rahman, M. A., Suzuki, T., Katsumata, H., & Ohta, K. (2004). Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J. Photoch. Photobio. A, 163, 419-424 Kashif, N., & Ouyang, F. (2009). Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J. Environ. Sci., 21, 527-533 KemI. (2002). The Products Register. National Chemical Inspectorate of Sweden, personal communication. Kernazhitsky, L., Shymanovska, V., Gavrilko, T., Naumov, V., Fedorenko, L., Kshnyakin, V., & Baran, J. (2014). Room temperature photoluminescence of anatase and rutile TiO2 powders. J. Lumin, 146, 199-204 Kirk, K. L. (1991). Biochemistry of inorganic fluoride Biochemistry of the Elemental Halogens and Inorganic Halides (pp. 19-68): Springer. Kitazawa, S.-i., Choi, Y., Yamamoto, S., & Yamaki, T. (2006). Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition. Thin Solid Films, 515, 1901-1904. Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B: Environ., 89, 494-502 Kodama, S., & Yagi, S. (1992). Photocatalytic hydrogenation, decomposition and isomerization reactions of alkenes over TiO2-adsorbed water. J. Chem. Soc., Faraday T., 88, 1685-1690. Kojima, H., Takeuchi, S., Itoh, T., Iida, M., Kobayashi, S., & Yoshida, T. (2013). In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors. Toxicology, 314, 76-83 Kong, E.-H., Lim, J., Lee, J. H., Choi, W., & Jang, H. M. (2015). Enhanced photocatalytic activity of {1 0 1}-oriented bipyramidal TiO2 agglomerates through interparticle charge transfer. Appl. Catal. B: Environ., 176, 76-82 Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B: Environ., 49, 1-14 Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. (1991). Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ. Sci. Technol., 25, 494-500 Krivec, M., Dillert, R., Bahnemann, D. W., Mehle, A., Štrancar, J., & Dražić, G. (2014). The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys., 16, 14867-14873. Kumar, P. M., Badrinarayanan, S., & Sastry, M. (2000). Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 358, 122-130 LeBel, G. L., & Williams, D. T. (1983). Determination of organic phosphate triesters in human adipose tissue. J. Assoc. Off. Ana. Chem., 66, 691-699 Lee, Y., & Von Gunten, U. (2012). Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res., 46, 6177-6195. Lei, H., & Snyder, S. A. (2007). 3D QSPR models for the removal of trace organic contaminants by ozone and free chlorine. Water Res., 41, 4051-4060 Leonards, P., Steindal, E. H., Van der Veen, I., Berg, V., Bustnes, J. O., & Van Leeuwen, S. (2011). Screening of organophosphor flame retardants 2010. SPFO-report 1091/2011: TA-2786. Lewandowski, M., & Ollis, D. F. (2003a). Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants: rate enhancement, rate inhibition, and a thermodynamic rationale. J. Catal., 217, 38-46. Lewandowski, M., & Ollis, D. F. (2003b). Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants: rate enhancement, rate inhibition, and a thermodynamic rationale. J. Catal., 217, 38-46 Lewis, N. S., Rosenbluth, M. L., Serpone, N., & Pelizzetti, E. (1989). Photocatalysis, Fundamentals and Applications. N. Serpone, E. Pelizzetti, Caps, 3. Li, T., Jiang, Y., An, X., Liu, H., Hu, C., & Qu, J. (2016). Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. Water Res., 102, 421-427 Li, Y., Song, W., Fu, W., Tsang, D. C. W., & Yang, X. (2015). The roles of halides in the acetaminophen degradation by UV/H2O2 treatment: kinetics, mechanisms, and products analysis. Chem. Eng. J., 271, 214-222 Liang, H.-c., Li, X.-z., Yang, Y.-h., & Sze, K.-h. (2008). Effects of dissolved oxygen, pH, and anions on the 2, 3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere, 73, 805-812 Lien, E. J., Ren, S., Bui, H.-H., & Wang, R. (1999). Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radical Bio. Med., 26, 285-294 Lindner, M., Bahnemann, D. W., Hirthe, B., & Griebler, W. D. (1997). Solar water detoxification: novel TiO2 powders as highly active photocatalysts. J. Sol. Energ., 119, 120-125. Liu, C., Röder, R., Zhang, L., Ren, Z., Chen, H., Zhang, Z., . . . Gao, P.-X. (2014). Highly efficient visible-light driven photocatalysts: a case of zinc stannate based nanocrystal assemblies. J. Mater. Chem. A, 2, 4157-4167. Liu, H., Zhao, H., Chen, S., Quan, X., & Zhang, Y. (2010). Photochlorination of bisphenol A by UV-Vis light irradiation in saline solution: effects of iron, nitrate and citric acid. Environ. Chem., 7, 548-553 Liu, H., Zhao, H., Quan, X., Zhang, Y., & Chen, S. (2009). Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation. Environ. Sci. Technol., 43, 7712-7717 Liu, K., Lu, J., & Ji, Y. (2015). Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol. Water Res., 84, 1-7. Liu, X., Ji, K., & Choi, K. (2012). Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquat. Toxicol., 114, 173-181 Liu, X., Ji, K., Jo, A., Moon, H.-B., & Choi, K. (2013). Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio). Aquat. Toxicol., 134, 104-111 Louit, G., Foley, S., Cabillic, J., Coffigny, H., Taran, F., Valleix, A., . . . Pin, S. (2005). The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography. Radiat. Phys. Chem., 72, 119-124 Lynn, R. K., Wong, K., Garvie-Gould, C., & Kennish, J. M. (1981). Disposition of the flame retardant, tris (1, 3-dichloro-2-propyl) phosphate, in the rat. Drug Metab. Dispos., 9, 434-441 Ma, Y., Cui, K., Zeng, F., Wen, J., Liu, H., Zhu, F., . . . Zeng, Z. (2013). Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography–mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples. Anal. Chim. Acta, 786, 47-53 Machulek Jr, A., Moraes, J. E. F., Vautier-Giongo, C., Silverio, C. A., Friedrich, L. C., Nascimento, C. A. O., . . . Quina, F. H. (2007). Abatement of the inhibitory effect of chloride anions on the photo-Fenton process. Environ. Sci. Technol., 41, 8459-8463 Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., & Chan, C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catal., 192, 185-196. Marklund, A., Andersson, B., & Haglund, P. (2003). Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere, 53, 1137-1146 Marklund, A., Andersson, B., & Haglund, P. (2005). Organophosphorus flame retardants and plasticizers in air from various indoor environments. J. Environ. Monit., 7, 814-819. doi:10.1039/b505587c Martínez-Carballo, E., González-Barreiro, C., Sitka, A., Scharf, S., & Gans, O. (2007). Determination of selected organophosphate esters in the aquatic environment of Austria. Sci.Total Environ., 388, 290-299 Mártire, D. O., Rosso, J. A., Bertolotti, S., Le Roux, G. C., Braun, A. M., & Gonzalez, M. C. (2001). Kinetic study of the reactions of chlorine atoms and Cl2•-radical anions in aqueous solutions. II. Toluene, benzoic acid, and chlorobenzene. J. Phys. Chem. A, 105, 5385-5392. Mascolo, G., Lopez, A., Foldenyi, R., Passino, R., & Tiravanti, G. (1995). Prometryne oxidation by sodium hypochlorite in aqueous solution: kinetics and mechanism. Environ. Sci. Technol., 29, 2987-2991 Matthew, B. M., & Anastasio, C. (2006). A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 1–bromide solutions. Atmos. Chem. Phys., 6, 2423-2437 Matthew, B. M., George, I., & Anastasio, C. (2003). Hydroperoxyl radical (HO2•) oxidizes dibromide radical anion (•Br2−) to bromine (Br2) in aqueous solution: Implications for the formation of Br2 in the marine boundary layer. Geophys. Res. Lett., 30. Matthews, R. W. (1986). Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide. J. Catal., 97, 565-568. McGee, S. P., Cooper, E. M., Stapleton, H. M., & Volz, D. C. (2012). Early zebrafish embryogenesis is susceptible to developmental TDCPP exposure. Environ. Health Persp., 120, 1585. Meeker, J. D., & Stapleton, H. M. (2010). House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. Environ. Health Persp., 118, 318. Méndez-Díaz, J. D., Shimabuku, K. K., Ma, J., Enumah, Z. O., Pignatello, J. J., Mitch, W. A., & Dodd, M. C. (2014). Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. Environ. Sci. Technol., 48, 7418-7427 Meyer, J., & Bester, K. (2004). Organophosphate flame retardants and plasticisers in wastewater treatment plants. J. Environ. Monitor., 6, 599-605. Mills, G., & Hoffmann, M. R. (1993). Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: identification of intermediates and mechanism of reaction. Environ. Sci. Technol., 27, 1681-1689 Miyauchi, M., Kieda, N., Hishita, S., Mitsuhashi, T., Nakajima, A., Watanabe, T., & Hashimoto, K. (2002). Reversible wettability control of TiO2 surface by light irradiation. Surface Science, 511, 401-407. Moser, G., McDaniel, K. L., Phillips, P. M., & Hedge, J. M. (2014). Neurobehavioral and thyroid evaluations of rats developmentally exposed to tris (1, 3-dichloro-2-propyl) phosphate (TDCPP). Neurotoxicol. Teratol., 97 Moser, J., & Grätzel, M. (1982). Photoelectrochemistry with Colloidal Semiconductors; Laser Studies of Halide Oxidation in Colloidal Dispersions of TiO2 and α‐Fe2O3. Helv. Chim. Acta, 65, 1436-1444 Murcia, J. J., Hidalgo, M. C., Navío, J. A., Araña, J., & Doña-Rodríguez, J. M. (2015). Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition. Appl. Catal. B: Environ., 179, 305-312 Muthukumaran, S., Song, L., Zhu, B., Myat, D., Chen, J.-Y., Gray, S., & Duke, M. (2014). UV/TiO2 photocatalytic oxidation of recalcitrant organic matter: effect of salinity and pH. Water Sci. Technol., 70, 437-443 Nasuhoglu, D., Berk, D., & Yargeau, V. (2012). Photocatalytic removal of 17α-ethinylestradiol (EE2) and levonorgestrel (LNG) from contraceptive pill manufacturing plant wastewater under UVC radiation. Chem. Eng. J., 185, 52-60 Nguyen-Phan, T.-D., & Shin, E. W. (2011). Morphological effect of TiO2 catalysts on photocatalytic degradation of methylene blue. J. Ind. Eng. Chem., 17, 397-400 Nie, X., Li, G., Gao, M., Sun, H., Liu, X., Zhao, H., . . . An, T. (2014). Comparative study on the photoelectrocatalytic inactivation of Escherichia coli K-12 and its mutant Escherichia coli BW25113 using TiO2 nanotubes as a photoanode. Appl. Catal. B: Environ., 147, 562-570 Nomeir, A. A., Kato, S., & Matthews, H. B. (1981). The metabolism and disposition of tris (1, 3-dichloro-2-propyl) phosphate (Fyrol FR-2) in the rat. Toxicol. appl. pharm., 57, 401-413 Nowell, L. H., & Hoigné, J. (1992). Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—II. Hydroxyl radical production. Water Res., 26, 599-605 O''Brien, G. J. (1992). Estimation of the removal of organic priority pollutants by the powdered activated carbon treatment process. Water Environ. Res., 64, 877-883 OEHHA. (2011). A chemical listed effective October 28, 2011 as known to the State of California to cause cancer tris(1,3-dichloro-propyl) phosphate (TDCPP). . Available at: http://oehha.ca.gov/prop65/prop65_list/102811list.html. Accessed October 20, 2012. CAS No. 13674-87-8. Ohtani, B., Ogawa, Y., & Nishimoto, S.-i. (1997). Photocatalytic activity of amorphous− anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. J. Phys. Chem. B, 101, 3746-3752 Oller, I., Gernjak, W., Maldonado, M. I., Pérez-Estrada, L. A., Sánchez-Pérez, J. A., & Malato, S. (2006). Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater., 138, 507-517 Ollis, D. F. (1985). Contaminant degradation in water. Environ. Sci. Technol., 19, 480-484 Oros-Ruiz, S., Zanella, R., & Prado, B. (2013). Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25. J. Hazard. Mater., 263, 28-35 Ouyang, J., Chang, M., & Li, X. (2012). CdS-sensitized ZnO nanorod arrays coated with TiO2 layer for visible light photoelectrocatalysis. J. Mater. Sci., 47, 4187-4193 Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S., Krapac, I. G., Landsberger, S., & O''Kelly, D. J. (2002). Source identification of sodium and chloride contamination in natural waters: preliminary results. Park, H., Vecitis, C. D., & Hoffmann, M. R. (2009). Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C, 113, 7935-7945. Parker, K. M., & Mitch, W. A. (2016). Halogen radicals contribute to photooxidation in coastal and estuarine waters. P. Natl. A. Sci., 113, 5868-5873. Parrino, F., Camera Roda, G., Loddo, V., & Palmisano, L. (2016). Elemental Bromine Production by TiO2 Photocatalysis and/or Ozonation. Angewandte Chemie International Edition, 55, 10391-10395 Paz, Y., Luo, Z., Rabenberg, L., & Heller, A. (1995). Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res., 10(1), 2842-2848 Pelizzetti, E., Maurino, V., Minero, C., Carlin, V., Tosato, M. L., Pramauro, E., & Zerbinati, O. (1990). Photocatalytic degradation of atrazine and other s-triazine herbicides. Environ. Sci. Technol., 24, 1559-1565. Peres, J. A., Domínguez, J. R., & Beltran-Heredia, J. (2010). Reaction of phenolic acids with Fenton-generated hydroxyl radicals: Hammett correlation. Desalination, 252(1-3), 167-171 %@ 0011-9164. Perrin, D. D., Dempsey, B., & Serjeant, E. P. (1981). pKa prediction for organic acids and bases (Vol. 1): Springer. Petosa, A. R., Brennan, S. J., Rajput, F., & Tufenkji, N. (2012). Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res., 46, 1273-1285 Phillips, L. G., & Barbano, D. M. (1997). The influence of fat substitutes based on protein and titanium dioxide on the sensory properties of lowfat milks1. J. Dairy Sci., 80, 2726-2731 Piccinini, P., Minero, C., Vincenti, M., & Pelizzetti, E. (1997). Photocatalytic mineralization of nitrogen-containing benzene derivatives. Catal. Today, 39, 187-195 Pignatello, J. J., & Sun, Y. (1995). Complete oxidation of metolachlor and methyl parathion in water by the photoassisted Fenton reaction. Water Res., 29, 1837-1844 Piscopo, A., Robert, D., & Weber, J. V. (2001). Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Appl. Catal. B: Environ., 35, 117-124 Poulios, I., Spathis, P., Grigoriadou, A., Delidou, K., & Tsoumparis, P. (1999). Protection of marbles against corrosion and microbial corrosion with TiO2 coatings. J. Environ. Sci. Heal. A, 34, 1455-1471 Ramjaun, S. N., Yuan, R., Wang, Z., & Liu, J. (2011). Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Cl− ions: kinetics and AOX formation. Electrochim. Acta, 58, 364-371 Rebenne, L. M., Gonzalez, A. C., & Olson, T. M. (1996). Aqueous chlorination kinetics and mechanism of substituted dihydroxybenzenes. Environ. Sci. Technol., 30, 2235-2242 Reemtsma, T., Quintana, J. B., Rodil, R., Garcı, M., & Rodrı, I. (2008). Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. TrAC Trends in Analytical Chemistry, 27, 727-737 Reeves, P., Ohlhausen, R., Sloan, D., Pamplin, K., Scoggins, T., Clark, C., . . . Green, D. (1992). Photocatalytic destruction of organic dyes in aqueous TiO2 suspensions using concentrated simulated and natural solar energy. Sol. Energy, 48, 413-420 Regnery, J., & Püttmann, W. (2009). Organophosphorus flame retardants and plasticizers in rain and snow from middle Germany. CLEAN–Soil, Air, Water, 37, 334-342 Regnery, J., & Püttmann, W. (2010). Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff. Chemosphere, 78, 958-964 Regulation, C. (1993). No 793/93 of 23 March 1993 on the evaluation and control of the risks of existing substances. Official Journal L, 84(5.4). Reis, M., Lobato, B., Lameira, J., Santos, A. S., & Alves, C. N. (2007). A theoretical study of phenolic compounds with antioxidant properties. Eur. J. Med. Chem., 42, 440-446 Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat. Res.-Rev. Mutat., 636, 178-242 Rivera, A. P., Tanaka, K., & Hisanaga, T. (1993). Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Appl. Catal. B: Environ., 3, 37-44 Rosario-Ortiz, F. L., Wert, E. C., & Snyder, S. A. (2010). Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Res., 44, 1440-1448 Roth, E., Mühlbacher, F., Karner, J., Hamilton, G., & Funovics, J. (1987). Free amino acid levels in muscle and liver of a patient with glucagonoma syndrome. Metabolism, 36, 7-13 Ryan, C. C., Tan, D. T., & Arnold, W. A. (2011). Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water Res., 45, 1280-1286 Sajjadi, H., Modaressi, A., Magri, P., Domańska, U., Sindt, M., Mieloszynski, J.-L., . . . Rogalski, M. (2013). Aggregation of nanoparticles in aqueous solutions of ionic liquids. J. Mol. Liq., 186, 1-6 Sakai, H., Baba, R., Hashimoto, K., Kubota, Y., & Fujishima, A. (1995). Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under irradiation. Chem. Lett., 24, 185-186 Sakthivel, S., Neppolian, B., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2000). TiO2 catalysed photodegradation of leather dye, Acid Green 16. Salthammer, T., Fuhrmann, F., & Uhde, E. (2003). Flame retardants in the indoor environment–Part II: release of VOCs (triethylphosphate and halogenated degradation products) from polyurethane. Indoor Air, 13, 49-52 Saratale, R. G., Noh, H. S., Song, J. Y., & Kim, D. S. (2014). Influence of parameters on the photocatalytic degradation of phenolic contaminants in wastewater using TiO2/UV system. J. Environ. Sci. Heal. A, 49, 1542-1552 Sasaki, K., Takeda, M., & Uchiyama, M. (1981). Toxicity, absorption and elimination of phosphoric acid triesters by killifish and goldfish. B. Environ. Contam. Tox., 27, 775-782 Sato, T., Watanabe, K., Nagase, H., Kito, H., Niikawa, M., & Yoshioka, Y. (1997). Investigation of the hemolytic effects of various organophosphoric acid triesters (OPEs) and their structure‐activity relationship. Toxicol. Environ. Chem., 59, 305-313 Schwarz, P. F., Turro, N. J., Bossmann, S. H., Braun, A. M., Wahab, A.-M. A. A., & Duerr, H. (1997). A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions. J. Phys. Chem. B, 101, 7127-7134 Selcuk, H., Sene, J. J., Zanoni, M. V. B., Sarikaya, H. Z., & Anderson, M. A. (2004). Behavior of bromide in the photoelectrocatalytic process and bromine generation using nanoporous titanium dioxide thin-film electrodes. Chemosphere, 54, 969-974. Sharma, V. K., Zboril, R., & McDonald, T. J. (2014). Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review. Journal of Environmental Science and Health, Part B, 49, 212-228 Shet, A., & Shetty, V. (2016). Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@ TiO2) nanoparticles under UV light irradiation. Environ. Sci. Pollut. R., 23, 20055-20064 Shih, Y.-h., & Lin, C.-h. (2012). Effect of particle size of titanium dioxide nanoparticle aggregates on the degradation of one azo dye. Environ. Sci. Pollut. R., 19, 1652-1658 Shih, Y. H., Liu, W. S., & Su, Y. F. (2012). Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions. Environ. Toxicol. Chem., 31, 1693-1698 Sigma-Aldrich. (2011). Sigmaaldrich. <http://www.sigmaaldrich.com> (accessed 31.10.11). Sin, J.-C., Lam, S.-M., Mohamed, A. R., & Lee, K.-T. (2012). Degrading Endocrine Disrupting Chemicals from Wastewater by TiO2. Int. J. Photoenergy, 2012 Šojić, D. V., Anderluh, V. B., Orčić, D. Z., & Abramović, B. F. (2009a). Photodegradation of clopyralid in TiO2 suspensions: Identification of intermediates and reaction pathways. J. Hazard. Mater., 168, 94-101. Šojić, D. V., Anderluh, V. B., Orčić, D. Z., & Abramović, B. F. (2009b). Photodegradation of clopyralid in TiO2 suspensions: Identification of intermediates and reaction pathways. J. Hazard. Mater., 168, 94-101 Somich, C. J., Muldoon, M. T., & Kearney, P. C. (1990). On-site treatment of pesticide waste and rinsate using ozone and biologically active soil. Environ. Sci. Technol., 24, 745-749 Stackelberg, P. E., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Henderson, A. K., & Reissman, D. B. (2004). Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ., 329, 99-113. Stapleton, H. M., Klosterhaus, S., Eagle, S., Fuh, J., Meeker, J. D., Blum, A., & Webster, T. F. (2009). Detection of organophosphate flame retardants in furniture foam and US house dust. Environ. Sci. Technol., 43, 7490-7495 Stapleton, H. M., Klosterhaus, S., Keller, A., Ferguson, P. L., van Bergen, S., Cooper, E., . . . Blum, A. (2011). Identification of flame retardants in polyurethane foam collected from baby products. Environ. Sci. Technol., 45, 5323-5331. Su, Y.-f., Wang, G.-B., Kuo, D. T. F., Chang, M.-l., & Shih, Y.-h. (2016). Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Appl. Catal. B: Environ., 186, 184-192 Sun, C., Zhao, J., Ji, H., Ma, W., & Chen, C. (2012). Photocatalytic debromination of preloaded decabromodiphenyl ether on the TiO2 surface in aqueous system. Chemosphere, 89, 420-425 Sundkvist, A. M., Olofsson, U., & Haglund, P. (2010). Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J. Environ. Monitor., 12, 943-951. Takahashi, S., Obana, Y., Okada, S., Abe, K., & Kera, Y. (2012). Complete detoxification of tris (1, 3-dichloro-2-propyl) phosphate by mixed two bacteria, Sphingobium sp. strain TCM1 and Arthrobacter sp. strain PY1. J. Biosci. Bioeng., 113, 79-83 Takigami, H., Suzuki, G., Hirai, Y., Ishikawa, Y., Sunami, M., & Sakai, S.-i. (2009). Flame retardants in indoor dust and air of a hotel in Japan. Environ. Int., 35, 688-693 Tan, Z., Sato, K., Takami, S., Numako, C., Umetsu, M., Soga, K., . . . Ogino, C. (2013). Particle size for photocatalytic activity of anatase TiO2 nanosheets with highly exposed {001} facets. RSC Adv., 3, 19268-19271 Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J.(Nat. Sci.), 42, 357-361. Thio, B. J. R., Zhou, D., & Keller, A. A. (2011). Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J. Hazard. Mater., 189, 556-563 Thiruvenkatachari, R., Vigneswaran, S., & Moon, I. S. (2008). A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean J. Chem. Eng., 25, 64-72 Tratnyek, P. G., & Hoigne, J. (1991). Oxidation of substituted phenols in the environment: a QSAR analysis of rate constants for reaction with singlet oxygen. Environ. Sci. Technol., 25, 1596-1604 Tsai, W.-T., Lee, M.-K., Su, T.-Y., & Chang, Y.-M. (2009). Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J. Hazard. Mater., 168, 269-275 Turchi, C. S., & Ollis, D. F. (1989). Mixed reactant photocatalysis: intermediates and mutual rate inhibition. J. Catal., 119, 483-496 Ulsamer, A. G., Osterberg, R., & McLaughlin, J. (1980). Flame-retardant chemicals in textiles. Clin. Toxicol., 17, 101-131. Union, E. (2008b). European Union Risk Assessment Report: Tris[2-chloro-1-(chloromethyl)ethyl] Phosphate (TDCP). European Communities, Luxembourg. CAS No. 13674-87-8, EINECS No. 237-159-2. Van der Veen, I., & de Boer, J. (2012). Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 88, 1119-1153 Vijay, M., Ramachandran, K., Ananthapadmanabhan, P. V., Nalini, B., Pillai, B. C., Bondioli, F., . . . Narendhirakannan, R. T. (2013). Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Curr. Appl. Phys., 13, 510-516 Vikesland, P. J., Fiss, E. M., Wigginton, K. R., McNeill, K., & Arnold, W. A. (2013). Halogenation of bisphenol-A, triclosan, and phenols in chlorinated waters containing iodide. Environ. Sci. Technol., 47, 6764-6772 Vione, D., Maurino, V., Minero, C., Calza, P., & Pelizzetti, E. (2005). Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution. Environ. Sci. Technol., 39, 5066-5075 Von Gunten, U., & Oliveras, Y. (1998). Advanced oxidation of bromide-containing waters: bromate formation mechanisms. Environ. Sci. Technol., 32, 63-70 Wang, D., Bolton, J. R., Andrews, S. A., & Hofmann, R. (2015a). Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process. Sci.Total Environ., 518, 49-57 Wang, J.-J., Liu, X., Ng, T. W., Xiao, J.-W., Chow, A. T., & Wong, P. K. (2013). Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms. Water Res., 47, 2701-2709 Wang, K.-H., Hsieh, Y.-H., Chou, M.-Y., & Chang, C.-Y. (1999). Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl. Catal. B: Environ., 21, 1-8 Wang, P., Yang, S., Shan, L., Niu, R., & Shao, X. (2011). Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation. J. Environ. Sci., 23, 1799-1807 Wang, Q., Lai, N. L.-S., Wang, X., Guo, Y., Lam, P. K.-S., Lam, J. C.-W., & Zhou, B. (2015b). Bioconcentration and transfer of the organophorous flame retardant 1, 3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae. Environ. Sci. Technol., 49, 5123-5132 Warren, J. J., Tronic, T. A., & Mayer, J. M. (2010). Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev., 110, 6961-7001 Wei, X., Li, J., Liu, Z., Yang, X., Naraginti, S., Xu, X., & Wang, X. (2018). Visible light photocatalytic mineralization of 17α-ethinyl estradiol (EE2) and hydrogen evolution over silver and strontium modified TiO2 nanoparticles: mechanisms and phytotoxicity assessment. RSC Adv., 8, 4329-4339. Westerhoff, P., Song, G., Hristovski, K., & Kiser, M. A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J. Environ. Monitor., 13, 1195-1203. WHO. (1998). World Health organization. Flame retardants: Tris(chloropropyl) phosphate and tris(2-chloroethyl) phosphate. Environ. Health Crit. 209. With corrections added in 2004. WHO. (2000). World Health organization. Flame retardants: Tris(2-butoxyethyl) phosphate and tris(2-ethylhexyl) phosphate. Environ. Health Crit. 218. Wu, C.-H., Chang, C.-L., & Kuo, C.-Y. (2005). Decolorization of Amaranth by advanced oxidation processes. React. Kinet. Catal. L., 86, 37-43 Wu, Z., Fang, J., Xiang, Y., Shang, C., Li, X., Meng, F., & Yang, X. (2016). Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. Water Res., 104, 272-282 Xiang, P., Liu, R.-Y., Li, C., Gao, P., Cui, X.-Y., & Ma, L. Q. (2017). Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health. Environ. Pollut., 230, 22-30 Xie, W., Dong, W., Kong, D., Ji, Y., Lu, J., & Yin, X. (2016). Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides. Chemosphere, 154, 613-619 Xu, T., Wang, Q., Shi, Q., Fang, Q., Guo, Y., & Zhou, B. (2015). Bioconcentration, metabolism and alterations of thyroid hormones of Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) in Zebrafish. Environ. Toxicol. Phar., 40, 581-586 Yamazaki, S., Matsunaga, S., & Hori, K. (2001). Photocatalytic degradation of trichloroethylene in water using TiO2 pellets. Water Res., 35, 1022-1028 Yang, S.-y., Chen, Y.-x., Lou, L.-p., & Wu, X.-n. (2005). Involvement of chloride anion in photocatalytic process. J. Environ. Sci.-Amsterdam, 17, 761-765 Yang, Y., & Pignatello, J. J. (2017). Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters. Molecules, 22, 1684. Yang, Y., Pignatello, J. J., Ma, J., & Mitch, W. A. (2014). Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol., 48, 2344-2351 Yang, Y., Pignatello, J. J., Ma, J., & Mitch, W. A. (2016). Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Res., 89, 192-200 Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M., & Amy, G. (2010). A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water Res., 44, 373-384 Ye, J., Liu, J., Li, C., Zhou, P., Wu, S., & Ou, H. (2017). Heterogeneous photocatalysis of tris (2-chloroethyl) phosphate by UV/TiO2: Degradation products and impacts on bacterial proteome. Water Res., 124, 29-38 Yu, J., Zhao, X., Du, J., & Chen, W. (2000). Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing. J. Sol-gel Sci. Techn., 17, 163-171. Yuan, R., Chen, T., Fei, E., Lin, J., Ding, Z., Long, J., . . . Wang, X. (2011). Surface Chlorination of TiO2-Based Photocatalysts: A Way to Remarkably Improve Photocatalytic Activity in Both UV and Visible Region. ACS Catal., 1, 200-206. doi:10.1021/cs100122v Yuan, R., Fan, S., Zhou, H., Ding, Z., Lin, S., Li, Z., . . . Wang, X. (2013). Chlorine‐Radical‐Mediated Photocatalytic Activation of C-H Bonds with Visible Light. Angewandte Chemie International Edition, 52, 1035-1039 Yue, B., Zhou, Y., Xu, J., Wu, Z., Zhang, X., Zou, Y., & Jin, S. (2002). Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates. Environ. Sci. Technol., 36, 1325-1329 Zabicky, J. (1971). The Chemistry of Bromination of Wood. V. Main Features of the Reaction of Picea excelsa with Aqueous Bromine at Low pH and High Initial Bromine Concentrations. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 25, 89-94 Zabicky, J., & Nutkovitch, M. (1986). Reactions of bromine and cyclohexene in aqueous media. Selectivity of bromohydrin vs. dibromo adduct formation. Ind. Eng. Chem. Prod. Rd., 25, 372-375 Zacharakis, A., Chatzisymeon, E., Binas, V., Frontistis, Z., Venieri, D., & Mantzavinos, D. (2013). Solar photocatalytic degradation of bisphenol A on immobilized ZnO or TiO2. Int. J. Photoenergy, 2013 Zafiriou, O. C. (1974). Sources and reactions of OH and daughter radicals in seawater. J. Geophys. Res., 79, 4491-4497. Zhang, F., Li, M., Li, W., Feng, C., Jin, Y., Guo, X., & Cui, J. (2011). Degradation of phenol by a combined independent photocatalytic and electrochemical process. Chem. Eng. J., 175, 349-355 Zhang, J., & Nosaka, Y. (2014a). Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. J. Phys. Chem. C, 118, 10824-10832. Zhang, J., & Nosaka, Y. (2014b). Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. J. Phys. Chem. C, 118, 10824-10832 Zhang, J., Wu, Y., Xing, M., Leghari, S. A. K., & Sajjad, S. (2010a). Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energ. Environ. Sci., 3, 715-726. Zhang, M., Wang, Q., Chen, C., Zang, L., Ma, W., & Zhao, J. (2009). Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies. Angewandte Chemie International Edition, 48, 6081-6084 Zhang, Q., Lu, M., Dong, X., Wang, C., Zhang, C., Liu, W., & Zhao, M. (2014). Potential estrogenic effects of phosphorus-containing flame retardants. Environ. Sci. Technol., 48, 6995-7001 Zhang, W., An, T., Cui, M., Sheng, G., & Fu, J. (2005). Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed‐bed reactor. J. Chem. Technol. Biot., 80, 223-229 Zhang, X., Cui, H., Humayun, M., Qu, Y., Fan, N., Sun, X., & Jing, L. (2016). Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride. Sci. Rep.-UK, 6, 21430 Zhang, Z., Feng, Y., Liu, Y., Sun, Q., Gao, P., & Ren, N. (2010b). Kinetic degradation model and estrogenicity changes of EE2 (17α-ethinylestradiol) in aqueous solution by UV and UV/H2O2 technology. J. Hazard. Mater., 181, 1127-1133 Zhang, Z., Wang, C.-C., Zakaria, R., & Ying, J. Y. (1998). Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B, 102, 10871-10878. Zhou, D., Ji, Z., Jiang, X., Dunphy, D. R., Brinker, J., & Keller, A. A. (2013). Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One, 8, e81239 Zwiener, C., Weil, L., & Niessner, R. (1995). Atrazine and parathion-methyl removal by UV and UV/O3 in drinking water treatment. Int. J. Environ. An. Ch., 58, 247-264
|