跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.175) 您好!臺灣時間:2025/11/28 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張茗
研究生(外文):Ming Chang
論文名稱:二氧化鈦奈米顆粒於紫外光照射下光催化降解新興汙染物:電解質之效應與定量構效關係
論文名稱(外文):Photodegradation of emerging contaminants with TiO2 nanoparticles in the presence of electrolytes and quantitative structure-activity relationship
指導教授:施養信
口試委員:吳先琪董瑞安張美玲
口試日期:2018-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:140
中文關鍵詞:二氧化鈦新興汙染物鹵素離子自由基定量構效關係
DOI:10.6342/NTU201900793
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Tris (1,3-dichloropropyl) phosphate (TDCPP)為含磷阻燃劑,其漸漸取代過去的溴化阻燃劑,由於TDCPP的使用量漸增,因此漸漸發現其殘留於環境中被偵測到,且TDCPP對於生物的生殖和神經系統具有負面影響,因此需要將其於環境中移除。光催化反應可以有效地處理水體中汙染物,因為其花費時間短且能將汙染物有效的降解甚至礦化,常見的光催化劑為TiO2,本次研究中所使用的TiO2為Degussa P25。環境中有許多因素可能會影響光催化反應,像是水體的pH、溫度與鹽類,如氯離子與溴離子,其可能來自於海水、垃圾滲出液或含鹽類的沼澤,因此需要分別探討這些環境因子對於光催化反應的影響。之前的研究大多顯示在添加鹽類離子後會抑制光催化劑降解汙染物;但經由我們之前的研究發現添加溴離子反而會促進TiO2光催化降解速率,由於以上研究降解的化合物不同,因此探討化合物的結構是否影響鹽類離子對於P25光催化降解化合物的速率是必要的。P25於酸性環境下其表面電荷帶正電,添加氯離子或溴離子後其表面所帶正電荷減少,表示氯離子或溴離子會中和P25表面的正電荷。另外,由FT-IR測量的結果顯示P25表面的氫氧官能基於添加氯離子或溴離子後減少,進一步地推斷氯離子或溴離子會與P25表面形成鍵結。於紫外光照射下,P25可於60分鐘內降解TDCPP,且在反應過程中TDCPP幾乎礦化並偵測到氯離子的釋出。P25光催化降解TDCPP的效率隨著TDCPP初始濃度增加與P25劑量減少而降低。P25於酸性環境下有較好的降解TDCPP的效率;而溫度對於P25降解TDCPP的速率影響不大;添加10-500 mM 氯化鈉或溴化鈉皆會抑制P25降解TDCPP。為了進一步的探討化合物結構與反應速率之間的關係,以4-chlorophenol (4-CP)、phenol、bisphenol A (BPA)、ethinyl estradiol (EE2)與trimethoprim (TMP)進行試驗。添加 10-500 mM氯化鈉都會 抑制 P25降解 此 5個化合物 的 速 率 ;但添加超過50 mM溴化鈉則會不同程度的促進P25降解此5個化合物的速率。沒有添加溴化鈉時,反應液中有偵測到HO●;但添加溴化鈉後,溶液中則都沒有偵測到HO●的產生,但有偵測到由溴離子與HO●或P25的電洞反應產生之Br●的形成,因此有溴離子存在時,主要以Br●與化合物反應。由定量構效關係分析的結果發現添加溴化鈉時 Hammett σ constant值愈偏負值的化合物其反應速率愈快表示Br●較會與取代基含有推電子基的化合物反應,也證明了Br●會選擇性地攻擊苯環結構上富含電子的化合物。此研究了解了環境因子對於P25光催化降解汙染物的影響、建立偵測Br●的方法、也探討化合物結構與反應速率之間的關係。
Tris (1,3-dichloropropyl) phosphate (TDCPP), one of phosphorus flame retardants, gradually replaces brominated flame retardants. Due to increasing usage of TDCPP, it is detected in the environment, and TDCPP has adverse effects on animals’ reproductive and neurological system. Therefore, TDCPP has to be removed from the environment. Photocatalytic reactions can efficiently remove contaminants in aquatic environments since it takes short time and contaminants are able to be efficiently degraded or even mineralized by photocatalytic reactions. TiO2 nanoparticles (NPs) are one of common photocatalysts and Degussa P25 TiO2 NP was chosen. Several factors might influence photocatalytic reactions, such as solution pH, temperatures, and halide ions like Cl- and Br-, which are likely from seawater, leachate or salty marshes. Hence, the effects of these factors on the photocatalytic reactions have to be investigated. Most previous studies showed that halide ions would inhibit degradation of pollutants by photocatalysts, while according to our previous study, the presence of halide ions enhanced photodegradation efficiency by TiO2 instead. Since the chemicals utilized in above experiments were different, it is necessary to explore the effects of chemical structures on the photocatalytic degradation rates of chemicals by P25 NPs in the presence of halide ions. The surface of P25 contained positive charges in acid conditions, and the positive charges on P25 surface reduced with Cl- or Br-, indicating that they were neutralized by Cl- or Br-. In addition, the results analyzed by Fourier-transform infrared spectroscopy showed that hydroxyl groups possessed on the surface of P25 decreased after the addition of Cl- or Br-, which further suggested that Cl- or Br- would form bonds with the surface of P25. P25 successfully degraded TDCPP in 60 min irradiated with UV light. Furthermore, TDCPP was almost mineralized during the process of photodegradation by P25, and Cl- released was also detected. The photodegradation rate constants of TDCPP with P25 decreased with increasing the initial TDCPP concentrations, but increased with the increase of P25 dosages. Photodegradation rates of TDCPP decreased when pH increased, and they did not be influenced obviously by different temperatures. The decrease of degradation kinetics of TDCPP in the presence of 10-500 mM NaCl or NaBr was observed. In order to further investigate the relationships between chemical structures and rate constants, rate constants of 4-chlorophenol (4-CP)、phenol、bisphenol A (BPA)、ethinyl estradiol (EE2), and trimethoprim (TMP) by P25 were measured. In the presence of Cl-, the degradation rate constants of 4-CP, phenol, BPA, EE2, and TMP all decelerated; while the photodegradation rates of 4-CP, phenol, BPA, EE2, and TMP increased with over 50 mM NaBr. Without NaBr, HO● formed by P25 NPs, while no HO● detected with NaBr. However, the formation of Br● through the reactions of HO● or hVB+ with Br- from P25 was detected. Thus, the dominant radicals reacting with chemicals were Br● in the presence of Br-. The results from quantitative structure-activity relationship showed that the rate constants of chemicals with negative values of Hammett σ constant was larger, indicating that Br● was more likely to react with chemicals possessing electron-donating substituents. It also confirmed that Br● could attack selectively with electron-rich compounds. This study understood the effects of environmental factors on the photodegradation of contaminants, developed the method of detecting Br●, and investigated the relationships between chemical structures and rate constants.
誌謝 II
摘要 III
Abstract V
List of Tables X
List of figures XII
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Introduction of Tris (1,3-dichloropropyl) phosphate 3
2.1.1 Tris (1,3-dichloropropyl) phosphate 3
2.1.2 Effect of TDCPP on biota 4
2.1.3 The content and distribution of TDCPP in the environment 6
2.1.4 The transport and fate of TDCPP in the environment 8
2.1.5 The photodegradation of TDCPP 8
2.2 Introduction of titanium dioxide 10
2.2.1 Titanium dioxide 10
2.2.2 The principle of photocatalytic degradation 11
2.2.3 The application of TiO2 in the environment 13
2.2.4 The photodegradation of phenolic compounds and emerging contaminants by TiO2 15
2.3 Effects on the photodegradation of contaminants 16
2.3.1 Particle size 16
2.3.2 Ions 17
2.3.2.1 Chloride 18
2.3.2.2 Bromide 20
2.3.3 pH 21
2.3.4 Antenna effects 21
2.4 Introduction of reactive halogen species (RHS) 22
2.4.1 The formation of halogen molecules from TiO2 22
2.4.2 The reactions of RHS with organic compounds in water 23
2.5 Introduction of quantitative structure-activity relationship 24
2.5.1 Hammett σ constant 25
Chapter 3 Materials and Methods 26
3.1 Chemicals 26
3.2 Characterization of the TiO2 nanoparticles 27
3.3 Aggregation and sedimentation of TiO2 28
3.4 Chemicals photodegradation 29
3.5 TOC measurements 30
3.6 Released ion measurements 30
3.7 Radical measurements 31
3.7.1 Measurements of hydroxyl radicals 31
3.7.2 Measurements of bromine by DPD 32
3.7.3 Measurements of bromine by cyclohexene 33
3.8 Analytical methods 35
3.8.1 Chemicals stock solution 35
3.8.2 Extraction method of TDCPP in solid phase and aqueous phase 35
3.8.3 Analysis of chemicals 35
3.8.4 Analysis of intermediate products 37
3.9 Calculation 37
3.9.1 Chemicals reaction rate constants 37
3.10 Quantitative structure-activity relationship 37
Chapter 4 Results and Discussion 39
4.1 Characterization of TiO2 nanoparticals 39
4.2 Aggregation and sedimentation of TiO2 43
4.2.1 Aggregation of P25 with different compounds and electrolytes 44
4.2.2 Sedimentation of P25 with different compounds and electrolytes 47
4.3 The effects of different conditions on the photodegradation of TDCPP 49
4.3.1 The effects of initial TDCPP concentration on the removal of TDCPP by TiO2 nanoparticles 49
4.3.2 The effects of TiO2 dosage on the removal of TDCPP by TiO2 nanoparticles 50
4.3.3 The effects of pH on the removal of TDCPP by TiO2 nanoparticles 51
4.3.4 The effects of temperature on the removal of TDCPP by TiO2 nanoparticles 54
4.3.5 The effects of electrolyte on the removal of TDCPP by TiO2 nanoparticles 55
4.3.6 TOC measurements 59
4.3.7 Chloride ions released from TDCPP 60
4.4 Photodegradation of chemicals using TiO2 61
4.4.1 The effects of electrolyte concentration on the removal of chemicals with P25 nanoparticles 61
4.4.1.1 The effects of NaCl concentration on the removal of chemicals by P25 nanoparticles 62
4.4.1.2 The effects of NaBr concentration on the removal of chemicals by P25 nanoparticles 69
4.4.1.3 The effects of sedimentation on the removal of chemicals by P25 nanoparticles 78
4.4.2 The effects of electrolyte concentration on the removal of chemicals by micro- ATiO2 particles 81
4.5 Mechanism and discussion 85
4.5.1 Measurements of hydroxyl radicals 85
4.5.2 Measurements of bromine 87
4.5.3 Photoluminescence of TiO2 92
4.5.4 The relationship between chemicals’ structure and photodegradation rate constants 93
4.5.5 Intermediate products measurements 98
Chapter 5 Conclusion 102
Reference 106
Appendix 127
(ATSDR), A. f. T. S. a. D. R. (2009). United States Department of Health and Human Services 2009. Draft Toxicological Profile for Phosphate Ester Flame Retardants (September).
Abdullah, M., Low, G. K. C., & Matthews, R. W. (1990). Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem.-US, 94, 6820-6825
Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. A. (2010). Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination, 261, 3-18
Antonopoulou, M., Giannakas, A., Bairamis, F., Papadaki, M., & Konstantinou, I. (2017). Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N, S-codoped TiO2 photocatalysts. Chem. Eng. J., 318, 231-239
Antonopoulou, M., Karagianni, P., & Konstantinou, I. K. (2016). Kinetic and mechanistic study of photocatalytic degradation of flame retardant Tris (1-chloro-2-propyl) phosphate (TCPP). Appl. Catal. B: Environ., 192.
Armstrong, D. A., Huie, R. E., Lymar, S., Koppenol, W. H., Merényi, G., Neta, P., . . . Wardman, P. (2013). Standard electrode potentials involving radicals in aqueous solution: inorganic radicals. BioInorganic Reaction Mechanisms, 9, 59-61
Arnold, W. A., Oueis, Y., O''Connor, M., Rinaman, J. E., Taggart, M. G., McCarthy, R. E., . . . Latch, D. E. (2017). QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants. Environ. Sci.-Proc. Imp., 19, 324-338.
Babich, M. A., Thomas, T. A., & Hatlelid, K. M. (2006). CPSC staff preliminary risk assessment of flame retardant (FR) chemicals in upholstered furniture foam. US Consumer Product Safety Commission, 21.
Bacaloni, A., Cucci, F., Guarino, C., Nazzari, M., Samperi, R., & Laganà, A. (2008). Occurrence of organophosphorus flame retardant and plasticizers in three volcanic lakes of central Italy. Environ. Sci. Technol., 42, 1898-1903
Bacsa, R. R., & Kiwi, J. (1998). Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl. Catal. B: Environ., 16, 19-29
Barazesh, J. M., Prasse, C., & Sedlak, D. L. (2016). Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions. Environ. Sci. Technol., 50, 10143-10152
Bester, K. (2007). Personal care compounds in the environment: Pathways, fate and methods for determination: John Wiley & Sons.
Betts, K. S. (2013). Exposure to TDCPP appears widespread. Environ. Health Persp., 121, a150.
Bichsel, Y., & Von Gunten, U. (2000). Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters. Environ. Sci. Technol., 34, 2784-2791
Bickley, R. I., Gonzalez-Carreno, T., Lees, J. S., Palmisano, L., & Tilley, R. J. D. (1991). A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem., 92, 178-190
Buxton, G. V., Bydder, M., Salmon, G. A., & Williams, J. E. (2000). The reactivity of chlorine atoms in aqueous solution. Part III. The reactions of Cl• with solutes. Phys. Chem. Chem. Phys., 2, 237-245.
Byrnell, C. J. A., Coombes, R. G., Hart, L. S., & Whiting, M. C. (1983). The reaction of bromine with cyclohexene in carbon tetrachloride. Part 1. Reactions in the absence of hydrogen bromide; presence of a scavenger. Journal of the Chemical Society, Perkin Transactions 2(8), 1079-1086.
Cai, R., Hashimoto, K., Itoh, K., Kubota, Y., & Fujishima, A. (1991). Photokilling of malignant cells with ultrafine TiO2 powder. B. Chem. Soc. Jpn., 64, 1268-1273.
Canonica, S., & Tratnyek, P. G. (2003). Quantitative structure‐activity relationships for oxidation reactions of organic chemicals in water. Environ. Toxicol. Chem., 22, 1743-1754
Carneiro, J. T., Yang, C.-C., Moulijn, J. A., & Mul, G. (2011). The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation. J. Catal., 277, 129-133
Chang, S.-m., & Lee, C.-y. (2013). A salt-assisted approach for the pore-size-tailoring of the ionic-liquid-templated TiO2 photocatalysts exhibiting high activity. Appl. Catal. B: Environ., 132, 219-228
Chen, D., Letcher, R. J., & Chu, S. (2012). Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography–tandem quadrupole mass spectrometry. J. Chromatogr. A, 1220, 169-174
Cheng, Y., Sun, H., Jin, W., & Xu, N. (2007). Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation. Chem. Eng. J., 128, 127-133
Chiang, K., Lim, T. M., Tsen, L., & Lee, C. C. (2004). Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Appl. Catal. A: Gen., 261, 225-237.
Chiou, C.-H., Wu, C.-Y., & Juang, R.-S. (2008). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem. Eng. J., 139, 322-329.
Choi, H. P. a. W. (2004). Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. J. Phys. Chem. B.
Cooper, E. M., Covaci, A., Van Nuijs, A. L. N., Webster, T. F., & Stapleton, H. M. (2011). Analysis of the flame retardant metabolites bis (1, 3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem., 401, 2123
Cristale, J., Dantas, R. F., De Luca, A., Sans, C., Esplugas, S., & Lacorte, S. (2017). Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water. J. Hazard. Mater., 323, 242-249
Crump, D., Chiu, S., & Kennedy, S. W. (2012). Effects of tris (1, 3-dichloro-2-propyl) phosphate and tris (1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells. Toxicol. Sci., 126, 140-148
De Laat, J., & Le, T. G. (2006). Effects of chloride ions on the iron (III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Appl. Catal. B: Environ., 66, 137-146
De Luca, A., He, X., Dionysiou, D. D., Dantas, R. F., & Esplugas, S. (2017). Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate. Chem. Eng. J., 318, 206-213
De Ridder, D. J., Villacorte, L., Verliefde, A. R. D., Verberk, J. Q. J. C., Heijman, S. G. J., Amy, G. L., & Van Dijk, J. C. (2010). Modeling equilibrium adsorption of organic micropollutants onto activated carbon. Water Res., 44, 3077-3086.
De Vleeschouwer, F., Van Speybroeck, V., Waroquier, M., Geerlings, P., & De Proft, F. (2007). Electrophilicity and nucleophilicity index for radicals. Organic letters, 9, 2721-2724.
Deborde, M., & Von Gunten, U. R. S. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res., 42, 13-51
Deng, J., Shao, Y., Gao, N., Xia, S., Tan, C., Zhou, S., & Hu, X. (2013). Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem. Eng. J., 222, 150-158
Deonarine, A., Lau, B. L. T., Aiken, G. R., Ryan, J. N., & Hsu-Kim, H. (2011). Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Environ. Sci. Technol., 45, 3217-3223
Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ. Sci. Technol., 32, 1549-1558
Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M. C., & Giamello, E. (2007). N-doped TiO2: theory and experiment. Chem. Phys., 339, 44-56
Diebold, U. (2003). Structure and properties of TiO2 surfaces: a brief review. Appl. Phys. A, 76, 681-687
Dishaw, L. V., Powers, C. M., Ryde, I. T., Roberts, S. C., Seidler, F. J., Slotkin, T. A., & Stapleton, H. M. (2011). Is the PentaBDE replacement, tris (1, 3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol. appl. pharm., 256, 281-289
Dunnill, C. W., Kafizas, A., & Parkin, I. P. (2012). CVD production of doped titanium dioxide thin films. Chem. Vapor Depos., 18, 89-101.
E., U. E. N. C. f. (1986). Assessment, Guidelines for Carcinogen Risk Assessment https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=54933&CFID=43868260&CFTOKEN=58847449.
Eldefrawi, A. T., Mansour, N. A., Brattsten, L. B., Ahrens, V. D., & Lisk, D. J. (1977). Further toxicologic studies with commercial and candidate flame retardant chemicals. Part II. B. Environ. Contam. Tox., 17, 720-726
Elimelech, M., Gregory, J., & Jia, X. (2013). Particle deposition and aggregation: measurement, modelling and simulation: Butterworth-Heinemann.
Emerson, D. W. (1994). Microdetermination of bromine, chlorine, and chlorine dioxide in water in any combination. Microchem. j., 50, 116-124
Erickson, P. R., Walpen, N., Guerard, J. J., Eustis, S. N., Arey, J. S., & McNeill, K. (2015). Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution. J. Phys. Chem. A, 119, 3233-3243
EU, E. U. (2008a). Tris[2-Chloro-1-(Chloromethyl)ethyl] Phosphate (TDCP) CAS No.: 13674-87-8. EINECS No.: 237-159-2. Risk Assessment Report.
Evenset, A., Leknes, H., Christensen, G. N., Warner, N., Remberger, M., & Gabrielsen, G. W. (2009). Screening of new contaminants in samples from the Norwegian Arctic: Silver, Platinum, Sucralose, Bisphenol A, Tetrabrombisphenol A, Siloxanes, Phtalates (DEHP), Phosphororganic flame retardants.
Fang, C., Xiao, D., Liu, W., Lou, X., Zhou, J., Wang, Z., & Liu, J. (2016). Enhanced AOX accumulation and aquatic toxicity during 2, 4, 6-trichlorophenol degradation in a Co (II)/peroxymonosulfate/Cl− system. Chemosphere, 144, 2415-2420
Farhat, A., Buick, J. K., Williams, A., Yauk, C. L., O''Brien, J. M., Crump, D., . . . Kennedy, S. W. (2014a). Tris (1, 3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos. Toxicol. appl. pharm., 275, 104-112
Farhat, A., Crump, D., Porter, E., Chiu, S., Letcher, R. J., Su, G., & Kennedy, S. W. (2014b). Time‐dependent effects of the flame retardant tris (1, 3‐dichloro‐2‐propyl) phosphate (TDCPP) on mRNA expression, in vitro and in ovo, reveal optimal sampling times for rapidly metabolized compounds. Environ. Toxicol. Chem., 33, 2842-2849
French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., & Baveye, P. C. (2009). Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol., 43, 1354-1359
Friedmann, D., Mendive, C., & Bahnemann, D. (2010). TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B: Environ., 99, 398-406
Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238, 37.
Gallard, H., Leclercq, A., & Croué, J.-P. (2004). Chlorination of bisphenol A: kinetics and by-products formation. Chemosphere, 56, 465-473
Gallard, H., & von Gunten, U. (2002). Chlorination of phenols: kinetics and formation of chloroform. Environ. Sci. Technol., 36, 884-890
García-Ripoll, A., Amat, A. M., Arques, A., Vicente, R., López, M. F., Oller, I., . . . Gernjak, W. (2007). Increased biodegradability of UltracidTM in aqueous solutions with solar TiO2 photocatalysis. Chemosphere, 68, 293-300
Goncalves, M. S. T., Oliveira-Campos, A. M. F., Pinto, E. M. M. S., Plasencia, P. M. S., & Queiroz, M. J. R. P. (1999). Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere, 39, 781-786
Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2010). Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ. Sci. Technol., 44, 6822-6828
Green, N., Schlabach, M., Bakke, T., Brevik, E., Dye, C., Herzke, D., . . . Schøyen, M. (2008). Screening of selected metals and new organic contaminants 2007. Phosphorus flame retardents, polyfluorinated organic compounds, nitro-PAHs, silver, platinum and sucralose in air, wastewater treatment falcilities, and freshwater and marine recipients.
Guillard, C., Disdier, J., Monnet, C., Dussaud, J., Malato, S., Blanco, J., . . . Herrmann, J.-M. (2003). Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Appl. Catal. B: Environ., 46, 319-332
Guo, K., Wu, Z., Shang, C., Yao, B., Hou, S., Yang, X., . . . Fang, J. (2017). Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water. Environ. Sci. Technol., 51, 10431-10439
Guo, Y., Lou, X., Xiao, D., Xu, L., Wang, Z., & Liu, J. (2012). Sequential reduction–oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates. J. Hazard. Mater., 241, 301-306
Hansch, C., Leo, A., & Taft, R. W. (1991). A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev., 91, 165-195
Hao, W. C., Zheng, S. K., Wang, C., & Wang, T. M. (2002). Comparison of the photocatalytic activity of TiO2 powder with different particle size. J. Mater. Sci. Lett., 21, 1627-1629
Harada, K., Hisanaga, T., & Tanaka, K. (1990). Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions. Water Res., 24, 1415-1417
Hasegawa, K., & Neta, P. (1978). Rate constants and mechanisms of reaction of chloride (Cl2-) radicals. J. Phys. Chem., 82, 854-857
Hasnat, M. A., Siddiquey, I. A., & Nuruddin, A. (2005). Comparative photocatalytic studies of degradation of a cationic and an anionic dye. Dyes Pigments, 66, 185-188
Heeb, M. B., Criquet, J., Zimmermann-Steffens, S. G., & Von Gunten, U. (2014). Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds—A critical review. Water Res., 48, 15-42
Henderson, M. A. (2011). A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep., 66, 185-297
Her, N., Park, J.-S., Yoon, J., Sohn, J., Lee, S., & Yoon, Y. (2011). Comparative study of sonocatalytic enhancement for removal of bisphenol A and 17α-ethinyl estradiol. Ind. Eng. Chem. Res., 50, 6638-6645
Hernández-Alonso, M. D., Fresno, F., Suárez, S., & Coronado, J. M. (2009). Development of alternative photocatalysts to TiO2: challenges and opportunities. Energ. Environ. Sci., 2(12), 1231-1257.
Hewitt, J. P. (1999). Formulating water-resistant TiO2 sunscreens. Cosmet. Toiletries, 114, 59-63.
Hidaka, H., Nohara, K., Zhao, J., Serpone, N., & Pelizzetti, E. (1992). Photo-oxidative degradation of the pesticide permethrin catalysed by irradiated TiO2 semiconductor slurries in aqueous media. J. Photoch. Photobio. A, 64, 247-254
Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev., 95, 69-96
Horikoshi, S., Tokunaga, A., Watanabe, N., Hidaka, H., & Serpone, N. (2006). Environmental remediation by an integrated microwave/UV illumination technique: IX. Peculiar hydrolytic and co-catalytic effects of platinum on the TiO2 photocatalyzed degradation of the 4-chlorophenol toxin in a microwave radiation field. J. Photoch. Photobio. A, 177, 129-143
Hotze, E. M., Bottero, J.-Y., & Wiesner, M. R. (2010). Theoretical framework for nanoparticle reactivity as a function of aggregation state. Langmuir, 26, 11170-11175
Hu, A., Zhang, X., Luong, D., Oakes, K. D., Servos, M. R., Liang, R., . . . Zhou, Y. (2012). Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment. Waste Biomass Valori., 3, 443-449
Hu, Q., Zhang, C., Wang, Z., Chen, Y., Mao, K., Zhang, X., . . . Zhu, M. (2008). Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2. J. Hazard. Mater., 154, 795-803
Hudec, T., Thean, J., Kuehl, D., & Dougherty, R. C. (1981). Tris (dichloropropyl) phosphate, a mutagenic flame retardant: frequent cocurrence in human seminal plasma. Science, 211, 951-952.
Huie, R. E., Clifton, C. L., & Neta, P. (1991). Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 38, 477-481.
Ishibashi, K.-i., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun., 2, 207-210
Jia, L., Shen, Z., Guo, W., Zhang, Y., Zhu, H., Ji, W., & Fan, M. (2015). QSAR models for oxidative degradation of organic pollutants in the Fenton process. J. Taiwan Inst. Chem. E., 46, 140-147
Jiang, D., Zhao, H., Zhang, S., & John, R. (2004). Kinetic study of photocatalytic oxidation of adsorbed carboxylic acids at TiO2 porous films by photoelectrolysis. J. Catal., 223, 212-220
Jiang, G., Wei, M., Yuan, S., & Chang, Q. (2016). Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO2 nanocrystals. Appl. Surf. Sci., 362, 418-426
Jovanovic, S. V., Tosic, M., & Simic, M. G. (1991). Use of the Hammett correlation and. delta.+ for calculation of one-electron redox potentials of antioxidants. J. Phys. Chem., 95, 10824-10827.
Kaneco, S., Rahman, M. A., Suzuki, T., Katsumata, H., & Ohta, K. (2004). Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J. Photoch. Photobio. A, 163, 419-424
Kashif, N., & Ouyang, F. (2009). Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. J. Environ. Sci., 21, 527-533
KemI. (2002). The Products Register. National Chemical Inspectorate of Sweden, personal communication.
Kernazhitsky, L., Shymanovska, V., Gavrilko, T., Naumov, V., Fedorenko, L., Kshnyakin, V., & Baran, J. (2014). Room temperature photoluminescence of anatase and rutile TiO2 powders. J. Lumin, 146, 199-204
Kirk, K. L. (1991). Biochemistry of inorganic fluoride Biochemistry of the Elemental Halogens and Inorganic Halides (pp. 19-68): Springer.
Kitazawa, S.-i., Choi, Y., Yamamoto, S., & Yamaki, T. (2006). Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition. Thin Solid Films, 515, 1901-1904.
Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B: Environ., 89, 494-502
Kodama, S., & Yagi, S. (1992). Photocatalytic hydrogenation, decomposition and isomerization reactions of alkenes over TiO2-adsorbed water. J. Chem. Soc., Faraday T., 88, 1685-1690.
Kojima, H., Takeuchi, S., Itoh, T., Iida, M., Kobayashi, S., & Yoshida, T. (2013). In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors. Toxicology, 314, 76-83
Kong, E.-H., Lim, J., Lee, J. H., Choi, W., & Jang, H. M. (2015). Enhanced photocatalytic activity of {1 0 1}-oriented bipyramidal TiO2 agglomerates through interparticle charge transfer. Appl. Catal. B: Environ., 176, 76-82
Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B: Environ., 49, 1-14
Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. (1991). Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ. Sci. Technol., 25, 494-500
Krivec, M., Dillert, R., Bahnemann, D. W., Mehle, A., Štrancar, J., & Dražić, G. (2014). The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys., 16, 14867-14873.
Kumar, P. M., Badrinarayanan, S., & Sastry, M. (2000). Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 358, 122-130
LeBel, G. L., & Williams, D. T. (1983). Determination of organic phosphate triesters in human adipose tissue. J. Assoc. Off. Ana. Chem., 66, 691-699
Lee, Y., & Von Gunten, U. (2012). Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res., 46, 6177-6195.
Lei, H., & Snyder, S. A. (2007). 3D QSPR models for the removal of trace organic contaminants by ozone and free chlorine. Water Res., 41, 4051-4060
Leonards, P., Steindal, E. H., Van der Veen, I., Berg, V., Bustnes, J. O., & Van Leeuwen, S. (2011). Screening of organophosphor flame retardants 2010. SPFO-report 1091/2011: TA-2786.
Lewandowski, M., & Ollis, D. F. (2003a). Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants: rate enhancement, rate inhibition, and a thermodynamic rationale. J. Catal., 217, 38-46.
Lewandowski, M., & Ollis, D. F. (2003b). Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants: rate enhancement, rate inhibition, and a thermodynamic rationale. J. Catal., 217, 38-46
Lewis, N. S., Rosenbluth, M. L., Serpone, N., & Pelizzetti, E. (1989). Photocatalysis, Fundamentals and Applications. N. Serpone, E. Pelizzetti, Caps, 3.
Li, T., Jiang, Y., An, X., Liu, H., Hu, C., & Qu, J. (2016). Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. Water Res., 102, 421-427
Li, Y., Song, W., Fu, W., Tsang, D. C. W., & Yang, X. (2015). The roles of halides in the acetaminophen degradation by UV/H2O2 treatment: kinetics, mechanisms, and products analysis. Chem. Eng. J., 271, 214-222
Liang, H.-c., Li, X.-z., Yang, Y.-h., & Sze, K.-h. (2008). Effects of dissolved oxygen, pH, and anions on the 2, 3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere, 73, 805-812
Lien, E. J., Ren, S., Bui, H.-H., & Wang, R. (1999). Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radical Bio. Med., 26, 285-294
Lindner, M., Bahnemann, D. W., Hirthe, B., & Griebler, W. D. (1997). Solar water detoxification: novel TiO2 powders as highly active photocatalysts. J. Sol. Energ., 119, 120-125.
Liu, C., Röder, R., Zhang, L., Ren, Z., Chen, H., Zhang, Z., . . . Gao, P.-X. (2014). Highly efficient visible-light driven photocatalysts: a case of zinc stannate based nanocrystal assemblies. J. Mater. Chem. A, 2, 4157-4167.
Liu, H., Zhao, H., Chen, S., Quan, X., & Zhang, Y. (2010). Photochlorination of bisphenol A by UV-Vis light irradiation in saline solution: effects of iron, nitrate and citric acid. Environ. Chem., 7, 548-553
Liu, H., Zhao, H., Quan, X., Zhang, Y., & Chen, S. (2009). Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation. Environ. Sci. Technol., 43, 7712-7717
Liu, K., Lu, J., & Ji, Y. (2015). Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol. Water Res., 84, 1-7.
Liu, X., Ji, K., & Choi, K. (2012). Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquat. Toxicol., 114, 173-181
Liu, X., Ji, K., Jo, A., Moon, H.-B., & Choi, K. (2013). Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio). Aquat. Toxicol., 134, 104-111
Louit, G., Foley, S., Cabillic, J., Coffigny, H., Taran, F., Valleix, A., . . . Pin, S. (2005). The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography. Radiat. Phys. Chem., 72, 119-124
Lynn, R. K., Wong, K., Garvie-Gould, C., & Kennish, J. M. (1981). Disposition of the flame retardant, tris (1, 3-dichloro-2-propyl) phosphate, in the rat. Drug Metab. Dispos., 9, 434-441
Ma, Y., Cui, K., Zeng, F., Wen, J., Liu, H., Zhu, F., . . . Zeng, Z. (2013). Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography–mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples. Anal. Chim. Acta, 786, 47-53
Machulek Jr, A., Moraes, J. E. F., Vautier-Giongo, C., Silverio, C. A., Friedrich, L. C., Nascimento, C. A. O., . . . Quina, F. H. (2007). Abatement of the inhibitory effect of chloride anions on the photo-Fenton process. Environ. Sci. Technol., 41, 8459-8463
Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., & Chan, C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catal., 192, 185-196.
Marklund, A., Andersson, B., & Haglund, P. (2003). Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere, 53, 1137-1146
Marklund, A., Andersson, B., & Haglund, P. (2005). Organophosphorus flame retardants and plasticizers in air from various indoor environments. J. Environ. Monit., 7, 814-819. doi:10.1039/b505587c
Martínez-Carballo, E., González-Barreiro, C., Sitka, A., Scharf, S., & Gans, O. (2007). Determination of selected organophosphate esters in the aquatic environment of Austria. Sci.Total Environ., 388, 290-299
Mártire, D. O., Rosso, J. A., Bertolotti, S., Le Roux, G. C., Braun, A. M., & Gonzalez, M. C. (2001). Kinetic study of the reactions of chlorine atoms and Cl2•-radical anions in aqueous solutions. II. Toluene, benzoic acid, and chlorobenzene. J. Phys. Chem. A, 105, 5385-5392.
Mascolo, G., Lopez, A., Foldenyi, R., Passino, R., & Tiravanti, G. (1995). Prometryne oxidation by sodium hypochlorite in aqueous solution: kinetics and mechanism. Environ. Sci. Technol., 29, 2987-2991
Matthew, B. M., & Anastasio, C. (2006). A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 1–bromide solutions. Atmos. Chem. Phys., 6, 2423-2437
Matthew, B. M., George, I., & Anastasio, C. (2003). Hydroperoxyl radical (HO2•) oxidizes dibromide radical anion (•Br2−) to bromine (Br2) in aqueous solution: Implications for the formation of Br2 in the marine boundary layer. Geophys. Res. Lett., 30.
Matthews, R. W. (1986). Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide. J. Catal., 97, 565-568.
McGee, S. P., Cooper, E. M., Stapleton, H. M., & Volz, D. C. (2012). Early zebrafish embryogenesis is susceptible to developmental TDCPP exposure. Environ. Health Persp., 120, 1585.
Meeker, J. D., & Stapleton, H. M. (2010). House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. Environ. Health Persp., 118, 318.
Méndez-Díaz, J. D., Shimabuku, K. K., Ma, J., Enumah, Z. O., Pignatello, J. J., Mitch, W. A., & Dodd, M. C. (2014). Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. Environ. Sci. Technol., 48, 7418-7427
Meyer, J., & Bester, K. (2004). Organophosphate flame retardants and plasticisers in wastewater treatment plants. J. Environ. Monitor., 6, 599-605.
Mills, G., & Hoffmann, M. R. (1993). Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: identification of intermediates and mechanism of reaction. Environ. Sci. Technol., 27, 1681-1689
Miyauchi, M., Kieda, N., Hishita, S., Mitsuhashi, T., Nakajima, A., Watanabe, T., & Hashimoto, K. (2002). Reversible wettability control of TiO2 surface by light irradiation. Surface Science, 511, 401-407.
Moser, G., McDaniel, K. L., Phillips, P. M., & Hedge, J. M. (2014). Neurobehavioral and thyroid evaluations of rats developmentally exposed to tris (1, 3-dichloro-2-propyl) phosphate (TDCPP). Neurotoxicol. Teratol., 97
Moser, J., & Grätzel, M. (1982). Photoelectrochemistry with Colloidal Semiconductors; Laser Studies of Halide Oxidation in Colloidal Dispersions of TiO2 and α‐Fe2O3. Helv. Chim. Acta, 65, 1436-1444
Murcia, J. J., Hidalgo, M. C., Navío, J. A., Araña, J., & Doña-Rodríguez, J. M. (2015). Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition. Appl. Catal. B: Environ., 179, 305-312
Muthukumaran, S., Song, L., Zhu, B., Myat, D., Chen, J.-Y., Gray, S., & Duke, M. (2014). UV/TiO2 photocatalytic oxidation of recalcitrant organic matter: effect of salinity and pH. Water Sci. Technol., 70, 437-443
Nasuhoglu, D., Berk, D., & Yargeau, V. (2012). Photocatalytic removal of 17α-ethinylestradiol (EE2) and levonorgestrel (LNG) from contraceptive pill manufacturing plant wastewater under UVC radiation. Chem. Eng. J., 185, 52-60
Nguyen-Phan, T.-D., & Shin, E. W. (2011). Morphological effect of TiO2 catalysts on photocatalytic degradation of methylene blue. J. Ind. Eng. Chem., 17, 397-400
Nie, X., Li, G., Gao, M., Sun, H., Liu, X., Zhao, H., . . . An, T. (2014). Comparative study on the photoelectrocatalytic inactivation of Escherichia coli K-12 and its mutant Escherichia coli BW25113 using TiO2 nanotubes as a photoanode. Appl. Catal. B: Environ., 147, 562-570
Nomeir, A. A., Kato, S., & Matthews, H. B. (1981). The metabolism and disposition of tris (1, 3-dichloro-2-propyl) phosphate (Fyrol FR-2) in the rat. Toxicol. appl. pharm., 57, 401-413
Nowell, L. H., & Hoigné, J. (1992). Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—II. Hydroxyl radical production. Water Res., 26, 599-605
O''Brien, G. J. (1992). Estimation of the removal of organic priority pollutants by the powdered activated carbon treatment process. Water Environ. Res., 64, 877-883
OEHHA. (2011). A chemical listed effective October 28, 2011 as known to the State of California to cause cancer tris(1,3-dichloro-propyl) phosphate (TDCPP). . Available at: http://oehha.ca.gov/prop65/prop65_list/102811list.html. Accessed October 20, 2012. CAS No. 13674-87-8.
Ohtani, B., Ogawa, Y., & Nishimoto, S.-i. (1997). Photocatalytic activity of amorphous− anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. J. Phys. Chem. B, 101, 3746-3752
Oller, I., Gernjak, W., Maldonado, M. I., Pérez-Estrada, L. A., Sánchez-Pérez, J. A., & Malato, S. (2006). Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater., 138, 507-517
Ollis, D. F. (1985). Contaminant degradation in water. Environ. Sci. Technol., 19, 480-484
Oros-Ruiz, S., Zanella, R., & Prado, B. (2013). Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25. J. Hazard. Mater., 263, 28-35
Ouyang, J., Chang, M., & Li, X. (2012). CdS-sensitized ZnO nanorod arrays coated with TiO2 layer for visible light photoelectrocatalysis. J. Mater. Sci., 47, 4187-4193
Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S., Krapac, I. G., Landsberger, S., & O''Kelly, D. J. (2002). Source identification of sodium and chloride contamination in natural waters: preliminary results.
Park, H., Vecitis, C. D., & Hoffmann, M. R. (2009). Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C, 113, 7935-7945.
Parker, K. M., & Mitch, W. A. (2016). Halogen radicals contribute to photooxidation in coastal and estuarine waters. P. Natl. A. Sci., 113, 5868-5873.
Parrino, F., Camera Roda, G., Loddo, V., & Palmisano, L. (2016). Elemental Bromine Production by TiO2 Photocatalysis and/or Ozonation. Angewandte Chemie International Edition, 55, 10391-10395
Paz, Y., Luo, Z., Rabenberg, L., & Heller, A. (1995). Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res., 10(1), 2842-2848
Pelizzetti, E., Maurino, V., Minero, C., Carlin, V., Tosato, M. L., Pramauro, E., & Zerbinati, O. (1990). Photocatalytic degradation of atrazine and other s-triazine herbicides. Environ. Sci. Technol., 24, 1559-1565.
Peres, J. A., Domínguez, J. R., & Beltran-Heredia, J. (2010). Reaction of phenolic acids with Fenton-generated hydroxyl radicals: Hammett correlation. Desalination, 252(1-3), 167-171 %@ 0011-9164.
Perrin, D. D., Dempsey, B., & Serjeant, E. P. (1981). pKa prediction for organic acids and bases (Vol. 1): Springer.
Petosa, A. R., Brennan, S. J., Rajput, F., & Tufenkji, N. (2012). Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res., 46, 1273-1285
Phillips, L. G., & Barbano, D. M. (1997). The influence of fat substitutes based on protein and titanium dioxide on the sensory properties of lowfat milks1. J. Dairy Sci., 80, 2726-2731
Piccinini, P., Minero, C., Vincenti, M., & Pelizzetti, E. (1997). Photocatalytic mineralization of nitrogen-containing benzene derivatives. Catal. Today, 39, 187-195
Pignatello, J. J., & Sun, Y. (1995). Complete oxidation of metolachlor and methyl parathion in water by the photoassisted Fenton reaction. Water Res., 29, 1837-1844
Piscopo, A., Robert, D., & Weber, J. V. (2001). Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Appl. Catal. B: Environ., 35, 117-124
Poulios, I., Spathis, P., Grigoriadou, A., Delidou, K., & Tsoumparis, P. (1999). Protection of marbles against corrosion and microbial corrosion with TiO2 coatings. J. Environ. Sci. Heal. A, 34, 1455-1471
Ramjaun, S. N., Yuan, R., Wang, Z., & Liu, J. (2011). Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Cl− ions: kinetics and AOX formation. Electrochim. Acta, 58, 364-371
Rebenne, L. M., Gonzalez, A. C., & Olson, T. M. (1996). Aqueous chlorination kinetics and mechanism of substituted dihydroxybenzenes. Environ. Sci. Technol., 30, 2235-2242
Reemtsma, T., Quintana, J. B., Rodil, R., Garcı, M., & Rodrı, I. (2008). Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. TrAC Trends in Analytical Chemistry, 27, 727-737
Reeves, P., Ohlhausen, R., Sloan, D., Pamplin, K., Scoggins, T., Clark, C., . . . Green, D. (1992). Photocatalytic destruction of organic dyes in aqueous TiO2 suspensions using concentrated simulated and natural solar energy. Sol. Energy, 48, 413-420
Regnery, J., & Püttmann, W. (2009). Organophosphorus flame retardants and plasticizers in rain and snow from middle Germany. CLEAN–Soil, Air, Water, 37, 334-342
Regnery, J., & Püttmann, W. (2010). Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff. Chemosphere, 78, 958-964
Regulation, C. (1993). No 793/93 of 23 March 1993 on the evaluation and control of the risks of existing substances. Official Journal L, 84(5.4).
Reis, M., Lobato, B., Lameira, J., Santos, A. S., & Alves, C. N. (2007). A theoretical study of phenolic compounds with antioxidant properties. Eur. J. Med. Chem., 42, 440-446
Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat. Res.-Rev. Mutat., 636, 178-242
Rivera, A. P., Tanaka, K., & Hisanaga, T. (1993). Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Appl. Catal. B: Environ., 3, 37-44
Rosario-Ortiz, F. L., Wert, E. C., & Snyder, S. A. (2010). Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Res., 44, 1440-1448
Roth, E., Mühlbacher, F., Karner, J., Hamilton, G., & Funovics, J. (1987). Free amino acid levels in muscle and liver of a patient with glucagonoma syndrome. Metabolism, 36, 7-13
Ryan, C. C., Tan, D. T., & Arnold, W. A. (2011). Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water Res., 45, 1280-1286
Sajjadi, H., Modaressi, A., Magri, P., Domańska, U., Sindt, M., Mieloszynski, J.-L., . . . Rogalski, M. (2013). Aggregation of nanoparticles in aqueous solutions of ionic liquids. J. Mol. Liq., 186, 1-6
Sakai, H., Baba, R., Hashimoto, K., Kubota, Y., & Fujishima, A. (1995). Selective killing of a single cancerous T24 cell with TiO2 semiconducting microelectrode under irradiation. Chem. Lett., 24, 185-186
Sakthivel, S., Neppolian, B., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2000). TiO2 catalysed photodegradation of leather dye, Acid Green 16.
Salthammer, T., Fuhrmann, F., & Uhde, E. (2003). Flame retardants in the indoor environment–Part II: release of VOCs (triethylphosphate and halogenated degradation products) from polyurethane. Indoor Air, 13, 49-52
Saratale, R. G., Noh, H. S., Song, J. Y., & Kim, D. S. (2014). Influence of parameters on the photocatalytic degradation of phenolic contaminants in wastewater using TiO2/UV system. J. Environ. Sci. Heal. A, 49, 1542-1552
Sasaki, K., Takeda, M., & Uchiyama, M. (1981). Toxicity, absorption and elimination of phosphoric acid triesters by killifish and goldfish. B. Environ. Contam. Tox., 27, 775-782
Sato, T., Watanabe, K., Nagase, H., Kito, H., Niikawa, M., & Yoshioka, Y. (1997). Investigation of the hemolytic effects of various organophosphoric acid triesters (OPEs) and their structure‐activity relationship. Toxicol. Environ. Chem., 59, 305-313
Schwarz, P. F., Turro, N. J., Bossmann, S. H., Braun, A. M., Wahab, A.-M. A. A., & Duerr, H. (1997). A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions. J. Phys. Chem. B, 101, 7127-7134
Selcuk, H., Sene, J. J., Zanoni, M. V. B., Sarikaya, H. Z., & Anderson, M. A. (2004). Behavior of bromide in the photoelectrocatalytic process and bromine generation using nanoporous titanium dioxide thin-film electrodes. Chemosphere, 54, 969-974.
Sharma, V. K., Zboril, R., & McDonald, T. J. (2014). Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review. Journal of Environmental Science and Health, Part B, 49, 212-228
Shet, A., & Shetty, V. (2016). Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@ TiO2) nanoparticles under UV light irradiation. Environ. Sci. Pollut. R., 23, 20055-20064
Shih, Y.-h., & Lin, C.-h. (2012). Effect of particle size of titanium dioxide nanoparticle aggregates on the degradation of one azo dye. Environ. Sci. Pollut. R., 19, 1652-1658
Shih, Y. H., Liu, W. S., & Su, Y. F. (2012). Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions. Environ. Toxicol. Chem., 31, 1693-1698
Sigma-Aldrich. (2011). Sigmaaldrich. <http://www.sigmaaldrich.com> (accessed 31.10.11).
Sin, J.-C., Lam, S.-M., Mohamed, A. R., & Lee, K.-T. (2012). Degrading Endocrine Disrupting Chemicals from Wastewater by TiO2. Int. J. Photoenergy, 2012
Šojić, D. V., Anderluh, V. B., Orčić, D. Z., & Abramović, B. F. (2009a). Photodegradation of clopyralid in TiO2 suspensions: Identification of intermediates and reaction pathways. J. Hazard. Mater., 168, 94-101.
Šojić, D. V., Anderluh, V. B., Orčić, D. Z., & Abramović, B. F. (2009b). Photodegradation of clopyralid in TiO2 suspensions: Identification of intermediates and reaction pathways. J. Hazard. Mater., 168, 94-101
Somich, C. J., Muldoon, M. T., & Kearney, P. C. (1990). On-site treatment of pesticide waste and rinsate using ozone and biologically active soil. Environ. Sci. Technol., 24, 745-749
Stackelberg, P. E., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Henderson, A. K., & Reissman, D. B. (2004). Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ., 329, 99-113.
Stapleton, H. M., Klosterhaus, S., Eagle, S., Fuh, J., Meeker, J. D., Blum, A., & Webster, T. F. (2009). Detection of organophosphate flame retardants in furniture foam and US house dust. Environ. Sci. Technol., 43, 7490-7495
Stapleton, H. M., Klosterhaus, S., Keller, A., Ferguson, P. L., van Bergen, S., Cooper, E., . . . Blum, A. (2011). Identification of flame retardants in polyurethane foam collected from baby products. Environ. Sci. Technol., 45, 5323-5331.
Su, Y.-f., Wang, G.-B., Kuo, D. T. F., Chang, M.-l., & Shih, Y.-h. (2016). Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Appl. Catal. B: Environ., 186, 184-192
Sun, C., Zhao, J., Ji, H., Ma, W., & Chen, C. (2012). Photocatalytic debromination of preloaded decabromodiphenyl ether on the TiO2 surface in aqueous system. Chemosphere, 89, 420-425
Sundkvist, A. M., Olofsson, U., & Haglund, P. (2010). Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J. Environ. Monitor., 12, 943-951.
Takahashi, S., Obana, Y., Okada, S., Abe, K., & Kera, Y. (2012). Complete detoxification of tris (1, 3-dichloro-2-propyl) phosphate by mixed two bacteria, Sphingobium sp. strain TCM1 and Arthrobacter sp. strain PY1. J. Biosci. Bioeng., 113, 79-83
Takigami, H., Suzuki, G., Hirai, Y., Ishikawa, Y., Sunami, M., & Sakai, S.-i. (2009). Flame retardants in indoor dust and air of a hotel in Japan. Environ. Int., 35, 688-693
Tan, Z., Sato, K., Takami, S., Numako, C., Umetsu, M., Soga, K., . . . Ogino, C. (2013). Particle size for photocatalytic activity of anatase TiO2 nanosheets with highly exposed {001} facets. RSC Adv., 3, 19268-19271
Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J.(Nat. Sci.), 42, 357-361.
Thio, B. J. R., Zhou, D., & Keller, A. A. (2011). Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J. Hazard. Mater., 189, 556-563
Thiruvenkatachari, R., Vigneswaran, S., & Moon, I. S. (2008). A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean J. Chem. Eng., 25, 64-72
Tratnyek, P. G., & Hoigne, J. (1991). Oxidation of substituted phenols in the environment: a QSAR analysis of rate constants for reaction with singlet oxygen. Environ. Sci. Technol., 25, 1596-1604
Tsai, W.-T., Lee, M.-K., Su, T.-Y., & Chang, Y.-M. (2009). Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J. Hazard. Mater., 168, 269-275
Turchi, C. S., & Ollis, D. F. (1989). Mixed reactant photocatalysis: intermediates and mutual rate inhibition. J. Catal., 119, 483-496
Ulsamer, A. G., Osterberg, R., & McLaughlin, J. (1980). Flame-retardant chemicals in textiles. Clin. Toxicol., 17, 101-131.
Union, E. (2008b). European Union Risk Assessment Report: Tris[2-chloro-1-(chloromethyl)ethyl] Phosphate (TDCP). European Communities, Luxembourg. CAS No. 13674-87-8, EINECS No. 237-159-2.
Van der Veen, I., & de Boer, J. (2012). Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 88, 1119-1153
Vijay, M., Ramachandran, K., Ananthapadmanabhan, P. V., Nalini, B., Pillai, B. C., Bondioli, F., . . . Narendhirakannan, R. T. (2013). Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Curr. Appl. Phys., 13, 510-516
Vikesland, P. J., Fiss, E. M., Wigginton, K. R., McNeill, K., & Arnold, W. A. (2013). Halogenation of bisphenol-A, triclosan, and phenols in chlorinated waters containing iodide. Environ. Sci. Technol., 47, 6764-6772
Vione, D., Maurino, V., Minero, C., Calza, P., & Pelizzetti, E. (2005). Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution. Environ. Sci. Technol., 39, 5066-5075
Von Gunten, U., & Oliveras, Y. (1998). Advanced oxidation of bromide-containing waters: bromate formation mechanisms. Environ. Sci. Technol., 32, 63-70
Wang, D., Bolton, J. R., Andrews, S. A., & Hofmann, R. (2015a). Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process. Sci.Total Environ., 518, 49-57
Wang, J.-J., Liu, X., Ng, T. W., Xiao, J.-W., Chow, A. T., & Wong, P. K. (2013). Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms. Water Res., 47, 2701-2709
Wang, K.-H., Hsieh, Y.-H., Chou, M.-Y., & Chang, C.-Y. (1999). Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl. Catal. B: Environ., 21, 1-8
Wang, P., Yang, S., Shan, L., Niu, R., & Shao, X. (2011). Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation. J. Environ. Sci., 23, 1799-1807
Wang, Q., Lai, N. L.-S., Wang, X., Guo, Y., Lam, P. K.-S., Lam, J. C.-W., & Zhou, B. (2015b). Bioconcentration and transfer of the organophorous flame retardant 1, 3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae. Environ. Sci. Technol., 49, 5123-5132
Warren, J. J., Tronic, T. A., & Mayer, J. M. (2010). Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev., 110, 6961-7001
Wei, X., Li, J., Liu, Z., Yang, X., Naraginti, S., Xu, X., & Wang, X. (2018). Visible light photocatalytic mineralization of 17α-ethinyl estradiol (EE2) and hydrogen evolution over silver and strontium modified TiO2 nanoparticles: mechanisms and phytotoxicity assessment. RSC Adv., 8, 4329-4339.
Westerhoff, P., Song, G., Hristovski, K., & Kiser, M. A. (2011). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J. Environ. Monitor., 13, 1195-1203.
WHO. (1998). World Health organization. Flame retardants: Tris(chloropropyl) phosphate and tris(2-chloroethyl) phosphate. Environ. Health Crit. 209. With corrections added in 2004.
WHO. (2000). World Health organization. Flame retardants: Tris(2-butoxyethyl) phosphate and tris(2-ethylhexyl) phosphate. Environ. Health Crit. 218.
Wu, C.-H., Chang, C.-L., & Kuo, C.-Y. (2005). Decolorization of Amaranth by advanced oxidation processes. React. Kinet. Catal. L., 86, 37-43
Wu, Z., Fang, J., Xiang, Y., Shang, C., Li, X., Meng, F., & Yang, X. (2016). Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. Water Res., 104, 272-282
Xiang, P., Liu, R.-Y., Li, C., Gao, P., Cui, X.-Y., & Ma, L. Q. (2017). Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health. Environ. Pollut., 230, 22-30
Xie, W., Dong, W., Kong, D., Ji, Y., Lu, J., & Yin, X. (2016). Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides. Chemosphere, 154, 613-619
Xu, T., Wang, Q., Shi, Q., Fang, Q., Guo, Y., & Zhou, B. (2015). Bioconcentration, metabolism and alterations of thyroid hormones of Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) in Zebrafish. Environ. Toxicol. Phar., 40, 581-586
Yamazaki, S., Matsunaga, S., & Hori, K. (2001). Photocatalytic degradation of trichloroethylene in water using TiO2 pellets. Water Res., 35, 1022-1028
Yang, S.-y., Chen, Y.-x., Lou, L.-p., & Wu, X.-n. (2005). Involvement of chloride anion in photocatalytic process. J. Environ. Sci.-Amsterdam, 17, 761-765
Yang, Y., & Pignatello, J. J. (2017). Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters. Molecules, 22, 1684.
Yang, Y., Pignatello, J. J., Ma, J., & Mitch, W. A. (2014). Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol., 48, 2344-2351
Yang, Y., Pignatello, J. J., Ma, J., & Mitch, W. A. (2016). Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Res., 89, 192-200
Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M., & Amy, G. (2010). A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water Res., 44, 373-384
Ye, J., Liu, J., Li, C., Zhou, P., Wu, S., & Ou, H. (2017). Heterogeneous photocatalysis of tris (2-chloroethyl) phosphate by UV/TiO2: Degradation products and impacts on bacterial proteome. Water Res., 124, 29-38
Yu, J., Zhao, X., Du, J., & Chen, W. (2000). Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by sol-gel processing. J. Sol-gel Sci. Techn., 17, 163-171.
Yuan, R., Chen, T., Fei, E., Lin, J., Ding, Z., Long, J., . . . Wang, X. (2011). Surface Chlorination of TiO2-Based Photocatalysts: A Way to Remarkably Improve Photocatalytic Activity in Both UV and Visible Region. ACS Catal., 1, 200-206. doi:10.1021/cs100122v
Yuan, R., Fan, S., Zhou, H., Ding, Z., Lin, S., Li, Z., . . . Wang, X. (2013). Chlorine‐Radical‐Mediated Photocatalytic Activation of C-H Bonds with Visible Light. Angewandte Chemie International Edition, 52, 1035-1039
Yue, B., Zhou, Y., Xu, J., Wu, Z., Zhang, X., Zou, Y., & Jin, S. (2002). Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates. Environ. Sci. Technol., 36, 1325-1329
Zabicky, J. (1971). The Chemistry of Bromination of Wood. V. Main Features of the Reaction of Picea excelsa with Aqueous Bromine at Low pH and High Initial Bromine Concentrations. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 25, 89-94
Zabicky, J., & Nutkovitch, M. (1986). Reactions of bromine and cyclohexene in aqueous media. Selectivity of bromohydrin vs. dibromo adduct formation. Ind. Eng. Chem. Prod. Rd., 25, 372-375
Zacharakis, A., Chatzisymeon, E., Binas, V., Frontistis, Z., Venieri, D., & Mantzavinos, D. (2013). Solar photocatalytic degradation of bisphenol A on immobilized ZnO or TiO2. Int. J. Photoenergy, 2013
Zafiriou, O. C. (1974). Sources and reactions of OH and daughter radicals in seawater. J. Geophys. Res., 79, 4491-4497.
Zhang, F., Li, M., Li, W., Feng, C., Jin, Y., Guo, X., & Cui, J. (2011). Degradation of phenol by a combined independent photocatalytic and electrochemical process. Chem. Eng. J., 175, 349-355
Zhang, J., & Nosaka, Y. (2014a). Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. J. Phys. Chem. C, 118, 10824-10832.
Zhang, J., & Nosaka, Y. (2014b). Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. J. Phys. Chem. C, 118, 10824-10832
Zhang, J., Wu, Y., Xing, M., Leghari, S. A. K., & Sajjad, S. (2010a). Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energ. Environ. Sci., 3, 715-726.
Zhang, M., Wang, Q., Chen, C., Zang, L., Ma, W., & Zhao, J. (2009). Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies. Angewandte Chemie International Edition, 48, 6081-6084
Zhang, Q., Lu, M., Dong, X., Wang, C., Zhang, C., Liu, W., & Zhao, M. (2014). Potential estrogenic effects of phosphorus-containing flame retardants. Environ. Sci. Technol., 48, 6995-7001
Zhang, W., An, T., Cui, M., Sheng, G., & Fu, J. (2005). Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed‐bed reactor. J. Chem. Technol. Biot., 80, 223-229
Zhang, X., Cui, H., Humayun, M., Qu, Y., Fan, N., Sun, X., & Jing, L. (2016). Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride. Sci. Rep.-UK, 6, 21430
Zhang, Z., Feng, Y., Liu, Y., Sun, Q., Gao, P., & Ren, N. (2010b). Kinetic degradation model and estrogenicity changes of EE2 (17α-ethinylestradiol) in aqueous solution by UV and UV/H2O2 technology. J. Hazard. Mater., 181, 1127-1133
Zhang, Z., Wang, C.-C., Zakaria, R., & Ying, J. Y. (1998). Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B, 102, 10871-10878.
Zhou, D., Ji, Z., Jiang, X., Dunphy, D. R., Brinker, J., & Keller, A. A. (2013). Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One, 8, e81239
Zwiener, C., Weil, L., & Niessner, R. (1995). Atrazine and parathion-methyl removal by UV and UV/O3 in drinking water treatment. Int. J. Environ. An. Ch., 58, 247-264
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊